FLUCTUATIONS OF CONSERVED CHARGES IN THE CANONICAL ENSEMBLE

CONFRONTING EXPERIMENTAL RESULTS WITH THEORY

Peter Braun-Munzinger¹, <u>Anar Rustamov^{1,2,3}</u>, Johanna Stachel²

GSI/EMMI¹, Universität Heidelberg², BSU/NNRC³

FLUCTUATIONS OF CONSERVED CHARGES IN THE CANONICAL ENSEMBLE

CONFRONTING EXPERIMENTAL RESULTS WITH THEORY

Peter Braun-Munzinger¹, <u>Anar Rustamov^{1,2,3}</u>, Johanna Stachel²

GSI/EMMI¹, Universität Heidelberg², BSU/NNRC³

- Why Fluctuations
- Canonical suppression
- Comparison to experiments
- Critical fluctuations

Why Fluctuations

fingerprints of criticality for $m_{u,d} = o$ survive at crossover with $m_{u,d} \neq o$

- To probe the structure of strongly interacting matter
 - Locate phase boundaries
 - Search for critical phenomena
 - ...

E-by-E fluctuations are predicted within Grand Canonical Ensemble

probing the response of the system to external perturbations

A. Bazavov et al., Phys.Rev. D85 (2012) 054503

Baselines from theory (in GCE)

for a thermal system in a fixed volume V within the Grand Canonical Ensemble

- In experiments
 - Volume (participants) fluctuates from E-to-E
 - Global conservation laws are important

$$\frac{\kappa_4(\Delta N_B)}{\kappa_2(\Delta N_B)} \equiv \gamma_2 \sigma^2 \neq \frac{\hat{\chi}_4^B}{\hat{\chi}_2^B} \qquad \frac{\kappa_3(\Delta N_B)}{\kappa_2(\Delta N_B)} \equiv \gamma_1 \sigma \neq \frac{\hat{\chi}_3^B}{\hat{\chi}_2^B}$$

V. Skokov, B. Friman, and K. Redlich, Phys.Rev. C88 (2013) 034911 P. Braun-Munzinger, A. R., J. Stachel, arXiv:1612.00702, NPA 960 (2017) 114

The strategy

- Estimation of the effects of global conservation laws
 - Canonical suppression for cumulants in finite acceptance
- Subtraction of volume fluctuations

A. Rustamov, Quark Matter, 13-19 MAY 2018, Venezia, Italy

Fluctuations in GCE

Two baryon species with the baryon numbers +1 and -1 in the ideal Boltzmann gas $Z_{GCE}(V,T,\mu) = \sum_{N_B=0}^{\infty} \sum_{N_{\overline{B}}=0}^{\infty} \frac{\left(\lambda_B z\right)^{N_B}}{N_B!} \frac{\left(\lambda_{\overline{B}} z\right)^{N_{\overline{B}}}}{N_{\overline{B}}!} = e^{2z\cosh\left(\frac{\mu}{T}\right)}, \quad \lambda_{B,\overline{B}} = e^{\pm \frac{\mu}{T}} \qquad z - \text{single baryon partition function}$ Uncorrelated Poisson limit: $\langle N_B N_{\overline{B}} \rangle = \langle N_B \rangle \langle N_{\overline{B}} \rangle$ Net-Baryons \rightarrow Skellam $\kappa_n = \langle N_B \rangle + (-1)^n \langle N_{\overline{B}} \rangle$ $\frac{\kappa_{2n+1}}{\kappa_{2k}} = \tanh\left(\frac{\mu}{T}\right) = \frac{\langle N_B \rangle - \langle N_{\overline{B}} \rangle}{\langle N_B \rangle + \langle N_{\overline{B}} \rangle}$

Fluctuations in CE

Two baryon species with the baryon numbers +1 and -1 in the ideal Boltzmann gas $Z_{GCE}(V,T,\mu) = \sum_{N_{B}=0}^{\infty} \sum_{N_{E}=0}^{\infty} \frac{\left(\lambda_{B} z\right)^{N_{B}}}{N_{B}!} \frac{\left(\lambda_{\overline{B}} z\right)^{N_{\overline{B}}}}{N_{\overline{B}}!} = e^{2z\cosh\left(\frac{\mu}{T}\right)}, \quad \lambda_{B,\overline{B}} = e^{\pm \frac{\mu}{T}} \qquad z-\text{single baryon partition function}$ Uncorrelated Poisson limit: $\langle N_B N_{\overline{B}} \rangle = \langle N_B \rangle \langle N_{\overline{B}} \rangle$ $\frac{\kappa_{2n+1}}{\kappa_{2k}} = \tanh\left(\frac{\mu}{T}\right) = \frac{\langle N_B \rangle - \langle N_{\overline{B}} \rangle}{\langle N_B \rangle + \langle N_{\overline{B}} \rangle}$ $\kappa_n = \langle N_B \rangle + (-1)^n \langle N_{\overline{B}} \rangle$ Net-Baryons → Skellam $Z_{CE}(V,T,B) = \sum_{N_{-}=0}^{\infty} \sum_{N_{-}=0}^{\infty} \frac{\left(\lambda_{B}z\right)^{n_{B}}}{N_{-}!} \frac{\left(\lambda_{\overline{B}}z\right)^{n_{B}}}{N_{-}!} \delta\left(N_{B}-N_{\overline{B}}-B\right) = I_{B}\left(2z\right)\Big|_{\lambda_{B}=\lambda_{\overline{B}}=1}$ • Non-Poisson single particles \rightarrow Canonical Suppression Strong correlations $\langle N_B N_{\overline{B}} \rangle \neq \langle N_B \rangle \langle N_{\overline{B}} \rangle$ $oldsymbol{O}$ • Net-Baryons do not fluctuate!

K. Redlich and L. Turko, Z. Phys. C5 (1980) 201, V.V. Begun, M. I. Gorenstein, O. S. Zozulya, PRC 72 (2005) 014902 P. Braun-Munzinger, B. Friman, F. Karsch, K. Redlich, V. Skokov, NPA 880 (2012), A. Bzdak, V. Koch, V. Skokov, PRC87 (2013) 014901

• fluctuations of net-baryons appear only inside finite acceptance

A. Rustamov, Quark Matter, 13-19 MAY 2018, Venezia, Italy

8

N_B

Fluctuations in CE (10⁸ Events)

A. Rustamov, Quark Matter, 13-19 MAY 2018, Venezia, Italy

α

Results From ALICE

Contribution from global baryon number conservation

The deviation from Skellam is due to the global baryon number conservation.

Results from STAR

Approach to unity for the highest energies

Non-monotonic behavior below 39 GeV

• Drop at 7.7 GeV for central events

X. Luo, PoS CPOD2014, 019 (2015) STAR: PRL 112, 032302 (2014)

Results from STAR

conservation laws dominate!

A. Rustamov, Quark Matter, 13-19 MAY 2018, Venezia, Italy

The α parameter

 $\langle n_p \rangle, \langle n_{\overline{p}} \rangle$ - also taken from STAR data

The α parameter

Volume fluctuations: P. Braun-Munzinger, A. R., J. Stachel, arXiv:1612.00702, NPA 960 (2017) 114

The α parameter

Volume fluctuations: P. Braun-Munzinger, A. R., J. Stachel, arXiv:1612.00702, NPA 960 (2017) 114

Predictions for κ_4/κ_2

above 11.5 GeV CE suppression describes the data

A. Rustamov, Quark Matter, 13-19 MAY 2018, Venezia, Italy

Comparison to critical fluctuations

- Data have to be corrected for conservation laws and volume fluctuations
- Qualitative differences emerge above 4th order cumulants!

- First development of the statistical event generator in GCE and CE
- The measured second cumulants of net-protons at ALICE are, after accounting for baryon number conservation, in agreement with the corresponding second cumulants of the Skellam distribution.
- All net-proton cumulants from STAR show deviations from the Skellam baseline.
- Above 11.5 GeV these deviations can be consistently described with the global baryon number conservation + unavoidable fluctuations of participating nucleons

Before making any quantitative statements the data on cumulants have to be corrected for conservation laws and volume fluctuations

A. Rustamov, Quark Matter, 13-19 MAY 2018, Venezia, Italy