The evolution of the near-side peak in two-particle number and transverse momentum correlations in Pb–Pb collisions from ALICE

Monika Varga-Kofarago
MTA Wigner RCP

on behalf of the ALICE Collaboration

16th May 2018 - Quark Matter 2018

Two-particle correlations – introduction

- Pb-Pb and pp data
- $\sqrt{s_{NN}} = 2.76 \text{ TeV} \text{ and } 5.02 \text{ TeV}$

Trigger_

Two-particle correlations – introduction

- Pb-Pb and pp data
- $\sqrt{s_{NN}} = 2.76 \text{ TeV} \text{ and } 5.02 \text{ TeV}$

Trigger

Two-particle correlations – motivation

Number correlations

Two-particle correlations – motivation

Number correlations

- Studying interaction of jets with medium
- Analysis done on a statistical basis
- Subtraction of fluctuating background
- Low p_T measurement possible
- Complementary tool to jet reconstruction
- Interactions ⇒ modification of peak
- Modification has been seen by STAR STAR Collaboration, Phys. Rev. C85 (2012) 014903
- Modification of peak yield seen by ALICE Phys. Rev. Lett. 108 (2012) 092301

Two-particle correlations – motivation

Number correlations

- Studying interaction of jets with medium
- Analysis done on a statistical basis
- Subtraction of fluctuating background
- Low p_T measurement possible
- Complementary tool to jet reconstruction
- Interactions ⇒ modification of peak
- Modification has been seen by STAR STAR Collaboration, Phys. Rev. C85 (2012) 014903
- Modification of peak yield seen by ALICE Phys. Rev. Lett. 108 (2012) 092301

- Studying collision dynamics
- Analysis done on a statistical basis
- Subtraction of fluctuating background
- Sensitive to momentum currents
- Centrality evolution gives information on:
 - System shear viscosity: n/s
 - System relaxation time: τ_{π}
- STAR: evolution of peak with centrality STAR Collaboration, Physics Letters B 704 (2011) 467-473
- Similar recent measurement by ALICE arXiv:1805 04422

Number correlations

Per trigger yield:

$$rac{1}{N_{trig}}rac{\mathrm{d}^2N_{assoc}}{\mathrm{d}\Delta\eta\mathrm{d}\Deltaarphi}=rac{S(\Delta\eta,\Deltaarphi)}{M(\Delta\eta,\Deltaarphi)}$$

- Acceptance correction by mixed event: $M(\Delta \eta, \Delta \varphi)$
- $p_{\rm T}$ bins between 1 GeV/c and 8 GeV/c
- All charged particles

Two-particle correlations – definitions

Number correlations

Per trigger yield:

$$rac{1}{N_{trig}}rac{\mathrm{d}^2N_{assoc}}{\mathrm{d}\Delta\eta\mathrm{d}\Deltaarphi}=rac{S(\Delta\eta,\Deltaarphi)}{M(\Delta\eta,\Deltaarphi)}$$

- Acceptance correction by mixed event: $M(\Delta \eta, \Delta \varphi)$
- p_T bins between 1 GeV/c and 8 GeV/c
- All charged particles

Momentum correlations

• $G_2(\Delta\varphi,\Delta\eta)=$

$$=\frac{\left\langle\sum\limits_{i}^{n_{1,1}}\sum\limits_{j\neq i}^{n_{1,2}}\rho_{\mathrm{T},i}\rho_{\mathrm{T},j}\right\rangle}{\langle n_{1,1}\rangle\langle n_{1,2}\rangle}-\langle p_{\mathrm{T},1}\rangle\langle p_{\mathrm{T},2}\rangle$$
cep. corr. to equalize detector response

- Accep. corr. to equalize detector response
- Particles with $0.2 < p_T < 2.0 \text{ GeV}/c$ used
- Charge dependent charge conservation:

CD:
$$\frac{1}{4}$$
 ((+-) + (-+) - (++) - (--))

• Charge independent – collective behavior:

CI:
$$\frac{1}{4}((+-)+(-+)+(++)+(--))$$

Extraction of the near-side peak width

- The near-side is fitted to characterize its shape evolution
- Fit function: background + Generalized Gaussian
 - Background:

$$C_1 + \sum_{n=2}^N 2V_n \cos(n\Delta\varphi)$$

Generalized Gaussian:

$$N \times e^{-\left|\frac{d\varphi}{w_{\varphi}}\right|^{\gamma_{\varphi}} - \left|\frac{d\eta}{w_{\eta}}\right|^{\gamma_{\eta}}} \Longrightarrow N = C_2 \times \frac{\gamma_{\varphi}\gamma_{\eta}}{4w_{\varphi}w_{\eta}\Gamma\left(\frac{1}{\gamma_{\varphi}}\right)\Gamma\left(\frac{1}{\gamma_{\eta}}\right)}$$

- $\gamma = 1$: Exponential
- $\gamma = 2$: Gaussian
- Characterize peak by variance of generalized Gaussian: $\sigma^2 = \frac{w^2 \Gamma(3/\gamma)}{\Gamma(1/\gamma)}$
- No attempt to give physical meaning to parameters of the generalized Gaussian
- Some bins around $(\Delta \varphi, \Delta \eta) = (0, 0)$ are excluded from the fit

- Charge dependent peak is wider than charge independent in $\Delta \varphi$
- Both show narrowing in $\Delta \varphi$ towards central events

- Charge independent peak is wider than charge dependent in $\Delta \eta$
- Charge independent peak is broadening towards central events in $\Delta \eta \to \text{related to } \eta/s$
- Charge dependent width is almost flat with centrality in $\Delta \eta$

• Ordering of the width according to p_T

- Ordering of the width according to p_T
- Width in $\Delta \varphi$ in 50–80% is equal to width in pp

- Ordering of the width according to p_T
- Width in $\Delta \varphi$ in 50–80% is equal to width in pp
- Small increase at low p_T in $\Delta \varphi$ with centrality

ullet Ordering of the width according to $p_{
m T}$

- ullet Ordering of the width according to $p_{
 m T}$
- ullet Width in $\Delta\eta$ in 50–80% is already larger than in pp

- Ordering of the width according to p_T
- Width in $\Delta \eta$ in 50–80% is already larger than in pp
- Very pronounced increase at low p_T in $\Delta \eta$

• Peak width in peripheral Pb-Pb equals to width in pp collisions

- Peak width in peripheral Pb-Pb equals to width in pp collisions
- Similar broadening towards central events as at $\sqrt{s_{NN}} = 2.76$ TeV

AMPT (A Multi-Phase Transport model) [1]

- Addresses non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

AMPT (A Multi-Phase Transport model) [1]

- Addresses non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

Initial stage

AMPT (A Multi-Phase Transport model) [1]

- Addresses non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

AMPT (A Multi-Phase Transport model) [1]

- Addresses non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

AMPT (A Multi-Phase Transport model) [1]

- Addresses non-equilibrium many-body dynamics
- Has collective effects through:
 - Partonic interactions
 - Hadronic interactions

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

Width in momentum correlations – charge dependent

- ullet None of the models describe the absolute width in $\Delta \varphi$
- All AMPT settings describe the trend in $\Delta \varphi$

Width in momentum correlations – charge dependent

- HIJING describes the centrality evolution in $\Delta \eta$
- All settings of AMPT give opposite trend in $\Delta \eta$

Width in momentum correlations – charge independent

ullet Only AMPT with string melting on describes the centrality evolution in $\Delta \varphi$

Width in momentum correlations – charge independent

• None of the models describe the trend in $\Delta \eta$

Width in momentum correlations – charge independent

- None of the models describe the trend in $\Delta \eta$
- Further details of this analysis can be found in Victor Gonzalez's poster (COR-11)

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}$, $\sigma_{\Delta\eta}^{CP} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

• Moderate broadening in $\Delta \varphi$

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP}=\frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}$, $\sigma_{\Delta\eta}^{CP}=\frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

- Much larger broadening in $\Delta \eta$

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}$, $\sigma_{\Delta\eta}^{CP} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

- Moderate broadening in $\Delta \varphi$
- Much larger broadening in $\Delta \eta$
- Broadening most significant at intermediate p_T

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP} = \frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}$, $\sigma_{\Delta\eta}^{CP} = \frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

ALICE

• Ratio of width in central over peripheral: $\sigma_{\Delta\varphi}^{CP}=\frac{\sigma_{\Delta\varphi}(0-10\%)}{\sigma_{\Delta\varphi}(50-80\%)}$, $\sigma_{\Delta\eta}^{CP}=\frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$

- Small difference between models in $\Delta \varphi$, $\Delta \eta$ more constraining
- String melting off, hadronic rescattering on describes data best

 $\frac{\sigma_{\Deltaarphi}(0-10\%)}{\sigma_{\Deltaarphi}(50-80\%)}$, $\sigma_{\Delta\eta}^{CP}=\frac{\sigma_{\Delta\eta}(0-10\%)}{\sigma_{\Delta\eta}(50-80\%)}$ • Ratio of width in central over peripheral: $\sigma^{CP}_{\Delta \omega} =$

- Small difference between models in $\Delta \varphi$, $\Delta \eta$ more constraining
- String melting off, hadronic rescattering on describes data best
- Note: none of AMPT settings describe absolute width better than 10% (see backup)

Phys. Rev. Lett. 119, 102301 (2017) Phys. Rev. C 96, 034904 (2017)

- In central collisions at low p_T : depletion around $(\Delta \varphi, \Delta \eta) = (0, 0)$
- Per trigger yield is corrected for two-track inefficiencies
- The area of the depletion is excluded from the fit

- In central collisions at low p_T : depletion around $(\Delta \varphi, \Delta \eta) = (0, 0)$
- Per trigger yield is corrected for two-track inefficiencies
- The area of the depletion is excluded from the fit
- Characterized by Fit-Data of Total yield in %

- Depletion yield = $\frac{\text{Fit-Data}}{\text{Total yield}}$ in %
- No depletion in higher p_T , peripheral or pp

- Depletion yield = $\frac{\text{Fit-Data}}{\text{Total yield}}$ in %
- ullet No depletion in higher p_{T} , peripheral or pp
- In AMPT almost independent of string melting
- ullet AMPT is in agreement with data at lowest p_{T}
- At higher p_T no version shows depletion

- Depletion yield = $\frac{\text{Fit-Data}}{\text{Total yield}}$ in %
- No depletion in higher p_T , peripheral or pp
- In AMPT almost independent of string melting
- \bullet AMPT is in agreement with data at lowest $p_{\rm T}$
- At higher p_T no version shows depletion
- Similar depletion seen at $\sqrt{s_{NN}} = 5.02 \text{ TeV} \rightarrow$ \rightarrow quantification on-going

Summary

- Two-particle angular correlations are sensitive tools to study the QGP:
 - Jet-medium interactions
 - Collision dynamics
 - Shear viscosity
- Evolution of peak in number correlations towards low p_T and central events:
 - Small broadening in $\Delta \varphi$
 - Significant broadening in $\Delta \eta$
 - Depletion around $(\Delta \varphi, \Delta \eta) = (0, 0)$
- Evolution of peak in p_T correlations towards central events:
 - Narrowing in $\Delta \varphi$
 - Broadening of charge independent in Δn
 - Charge dependent in $\Delta \eta$ does not change
- Model comparisons
 - None of the models describe all measured quantities
 - Two-particle correlations are useful to refine the models

Thank you for your attention!

Further details of the analyses

Number correlations

- 39M Pb–Pb events at $\sqrt{s_{NN}} = 2.76$ TeV
- 50M Pb-Pb events at $\sqrt{s_{NN}} = 5.02$ TeV
- 30M pp events at $\sqrt{s} = 2.76$ TeV
- $|\eta| < 0.8$
- $|z_{\text{vtx}}| < 7 \text{ cm}$
- Selection criteria on decay products: pair excluded if
 - $m_{\rm inv} < 4 \text{ MeV}/c^2$
 - $|m_{\rm inv} m(\Lambda)| < 5 \text{ MeV}/c^2$
 - $|m_{\rm inv} m(K_{\rm s}^0)| < 5 \text{ MeV}/c^2$
- Selection criteria to remove two-track inefficiencies: $|\Delta \eta| > 0.02$ and $|\Delta \varphi^*| > 0.02$ rad
- Correction done to remove distortion arising from a dependence on η

Momentum correlations

- 11M Pb–Pb events at $\sqrt{s_{NN}} = 2.76$ TeV
- $|\eta| < 0.8$
- $|z_{\rm vtx}| < 7$ cm
- Electrons are rejected based on TPC dE/dx
- Statistical uncertainties based on sub-sample method

Evolution of the near-side peak shape in number correlations

Evolution of the near-side peak shape in momentum correlations

Comparison of number correlations to the STAR experiment

- Results agree within 2σ in all bins
- Values slightly higher at STAR in the central bins in $\Delta \varphi$

Comparison of momentum correlations to the STAR experiment

- STAR points are from Physics Letters B 704 (2011) 467-473
- Values labeled 1D RMS are extracted with the same method as at STAR
- Different trend, but agree within the lower limit of STAR

AMPT settings

- With string melting and with hadronic rescattering
 - Version v2.25t3
 - Parameter isoft = 4
 - Parameter ntmax = 150
- With string melting and without hadronic rescattering
 - Version v2.25t3
 - Parameter isoft = 4
 - Parameter ntmax = 3
- Without string melting and with hadronic rescattering
 - Version v1.25t3
 - Parameter isoft = 1
 - Parameter ntmax = 150

AMPT settings

Settings:

- string melting off, hadronic rescattering on
- string melting on, hadronic rescattering on
- string melting on, hadronic rescattering off

Comparison of number corr. to MC – absolute width in peripheral

• Absolute width described by $\frac{\sigma_{\Delta\varphi}(\mathsf{Data})}{\sigma_{\Delta\varphi}(\mathsf{MC})}$, $\frac{\sigma_{\Delta\eta}(\mathsf{Data})}{\sigma_{\Delta\eta}(\mathsf{MC})}$

ullet None of the AMPT settings describe all p_{T} bins

Comparison of number corr. to MC – absolute width in central

• Absolute width described by $\frac{\sigma_{\Delta\varphi}(\mathsf{Data})}{\sigma_{\Delta\varphi}(\mathsf{MC})}$, $\frac{\sigma_{\Delta\eta}(\mathsf{Data})}{\sigma_{\Delta\eta}(\mathsf{MC})}$

ullet None of the AMPT settings describe all p_{T} bins

- Generator level
- AMPT with hadronic rescattering on shows depletion independent of string melting

Summary of the comparison of the number correlations to AMPT

AMPT settings Measurements	String melting & hadronic rescattering	String melting	Hadronic rescattering
Evolution of width	No	No	Yes
Absolute width	10%	10-15%	20 - 30%
Depletion	Yes	No	Yes

- With hadronic rescattering describes depletion and shape evolution
- Absolute width is not described better than 10%

- Are observed effects described by elliptic and/or radial flow?
- 0–10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- ullet $v_2\{2\}$ was extracted with $0.2 < p_{
 m T} < 5$ GeV/c

Sample	$eta_{ m T}$	$v_2\{2\}$
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

^{*} From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

- With string melting or with hadronic rescattering describes $v_2\{2\}$
- ullet $eta_{
 m T}$ is lower for all AMPT cases than for data

- Are observed effects described by elliptic and/or radial flow?
- 0-10% fitted with Blast-wave fit to extract expansion velocity

$$(\pi:~0.5 < p_{\mathrm{T}} < 1~\mathrm{GeV}/c,~\mathrm{K:}~0.2 < p_{\mathrm{T}} < 1.5~\mathrm{GeV}/c,~\mathrm{p:}~0.3 < p_{\mathrm{T}} < 2.0~\mathrm{GeV}/c)$$

• $v_2\{2\}$ was extracted with $0.2 < p_T < 5$ GeV/c

Sample	$eta_{ m T}$	<i>v</i> ₂ {2}
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

^{*} From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

Closest $v_2\{2\}$ to data

- Only version with hadronic rescattering
 - has depletion
 - follows the centrality and p_T evolution of relative width

- Are observed effects described by elliptic and/or radial flow?
- 0–10% fitted with Blast-wave fit to extract expansion velocity (π : 0.5 < $p_{\rm T}$ < 1 GeV/c, K: 0.2 < $p_{\rm T}$ < 1.5 GeV/c, p: 0.3 < $p_{\rm T}$ < 2.0 GeV/c)
- $v_2\{2\}$ was extracted with $0.2 < p_T < 5$ GeV/c

Sample	$eta_{ m T}$	$v_2\{2\}$
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

^{*} From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

Closest $\beta_{\rm T}$ to data

- Has depletion
- ullet Follows the centrality and p_{T} evolution of relative width

- Are observed effects described by elliptic and/or radial flow?
- ullet 0–10% fitted with Blast-wave fit to extract expansion velocity
- $(\pi: 0.5 < p_{\rm T} < 1 \text{ GeV/}c, \text{ K: } 0.2 < p_{\rm T} < 1.5 \text{ GeV/}c, \text{ p: } 0.3 < p_{\rm T} < 2.0 \text{ GeV/}c)$ • $v_2\{2\}$ was extracted with $0.2 < p_{\rm T} < 5 \text{ GeV/}c$

Sample	$eta_{ m T}$	$v_2\{2\}$
AMPT string melting and hadronic rescattering	0.442	0.0412 ± 0.0002
AMPT string melting	0.202	0.0389 ± 0.0002
AMPT hadronic rescattering	0.540	0.0330 ± 0.0002
Data*	0.649 ± 0.022	0.0364 ± 0.0003

^{*} From Phys. Rev. C88 (2013) 044910 and Phys. Rev. Lett. 105 (2010) 252302

- ullet Large $eta_{
 m T}$ is needed to describe depletion and evolution
- Likely cause of the effects is radial flow