nPDF studies in pPb collisions at 8.16 TeV with the CMS detector

Andre Ståhl on behalf of the CMS Collaboration

Laboratoire Leprince-Ringuet, École Polytechnique, France

Quark Matter 2018 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

W bosons and top quarks in pPb

CMS-PHO-EVENTS-2016-009-26

CMS-PHO-EVENTS-2016-009-19

- Proton-lead asymmetric collisions
- Center-of-mass frame rapidity boost ≈ 0.465
- Define forward-backward ratios: • $R_{FB} = \frac{N(\eta_{CM} > 0)}{N(\eta_{CM} < 0)} = \frac{N(p-going)}{N(Pb-going)}$

Top quarks in pPb collisions

р

Dominant production modes: gluon → ttbar

- Top quarks decay before interacting with the medium
- Measurement of top quark and dijet production probe modifications to gluon PDF

• Top quarks constrain the high x (x>0.05) and high Q ($Q^2 \sim m_{top}^2$) region

Quark Matter 2018

Poster, G. Krintiras on top quarks, INI-12 Talk, D. Tapia Takaki on dijets, Mon. 17:50

W bosons in pPb collisions

Dominant production modes: $u\overline{d} \rightarrow W^+$, $d\overline{u} \rightarrow W^-$

- Reflects interactions between valence and sea quarks
- Quarks behave differently inside bound nucleons compared to free-nucleons \rightarrow nuclear PDF effects.
- q W^+ R_{EPPS16} 1.3 antishadowing maximum 1.1 1.0 163 0.9 small-x shadowing 0.8 EPJ C77 0.7 EMC minimum 0.6 0.5 10⁻² 10^{-3} 10 W in pPb @ 8.16 TeV pPb $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ **CMS** Simulation Preliminary **POWHEG v2** $10 \models \mathbf{W}^- \rightarrow \mu^- + \overline{\nu}_{\mu}$ $p_{-}^{\mu} > 25 \text{ GeV/e}$ CMS-PAS-HIN-17 ^qd 10 × 16/05/18

• W production in pPb @ LHC probe the quark nPDFs in **10**⁻³ < x < **10**⁻¹ @ high Q²

Quark Matter 2018

Poster, H. Kim on W boson, ELW-16

CMS

W bosons in pPb collisions

 Measurement of W production @ 5.02 TeV by CMS helped to improve nPDF sets (CMS data included in EPPS16) and provided a hint of nuclear modifications with poor significance

Small deviation observed in charge asymmetry @ backward region : possible different modification of up and down quark PDF in the nucleus?

 W boson yield increased by ~10x in 2016 data w.r.t. 2013, due to increase of ~2x in xsec and ~5x in lumi

Year	$\sqrt{s_{NN}}$	Luminosity (CMS)
2013	5.02 TeV	35 nb⁻¹
2016	8.16 TeV	174 nb ⁻¹

Outline

• Top quark production in pPb at 8.16 TeV

Phys. Rev. Lett. 119 (2017), 242001

- W boson production in pPb at 8.16 TeV
 - > CMS-PAS-HIN-17-007

Top quarks in pPb at 8.16 TeV

Top quarks in pPb

Phys. Rev. Lett. 119 (2017), 242001

• **B-quark tagger:** Based on combined secondary vertex

CMS

- Lepton Selection: Isolated lepton with $p_{\tau} > 30$ GeV/c & $|\eta| < 2.1$
- Extraction: Fits of the W → jj' mass using functional forms in different b-jet and lepton flavor categories, without relying on simulation

Top quarks: cross section

Phys. Rev. Lett. 119 (2017), 242001

- **First observation** (>5σ) of **top quark** production in **pPb** collisions!
- Inclusive cross section (45±8 nb) in agreement with NNLO+NNLL pQCD interfaced to NLO proton/nuclear PDF calculations

W bosons in pPb at 8.16 TeV

16/05/18

W bosons in pPb

CMS-PAS-HIN-17-007

Decay channel: muon + missing momentum

- Objects reconstructed with the Particle Flow (PF) algorithm
- Muon selection: Leading isolated muon with $p_{\tau} > 25$ GeV/c and $|\eta| < 2.4$
- Muon isolation: Sum of p_{τ} of PF particles (y , h[±] & h⁰) around the muon < 15% of muon p_{τ} (suppress multi-jet bkg)
- Event selection:
 - Veto $Z \rightarrow \mu^- \mu^+$: Reject events with $\mu^- \mu^+$ pairs, $p^{\mu^-}_{\tau} > 15 \& p^{\mu^+}_{\tau} > 15 GeV/c$
- Dominant backgrounds: QCD jet → muon passing isolation, and $Z \rightarrow$ muon + (missing muon)

Quark Matter 2018

16/05/18

ΔR=0.3

W bosons in pPb

Simulation: pPb NLO POWHEG v2 including CT14+EPPS16 nPDF

- Signal and electroweak background: Template from simulation
- QCD multi-jet background: Data-driven functional form
- Extraction: Fits of the missing p_{T} distribution in 24 bins of muon η_{CM}

Quark Matter 2018

CMS-PAS-HIN-17-007

W boson: cross section

CMS-PAS-HIN-17-007 NEW RESUL P(χ²) = <0.01% CT14, 79% nCTEQ15, 96% EPPS16 QM12 $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ pPb 173.4 nb⁻¹ pPb 173.4 nb⁻¹ √s_{NN} = 8.16 TeV \textbf{W}^{*} \rightarrow μ^{*} + ν_{μ} CMS $W^- \rightarrow \mu^- + \overline{\nu}_{\mu}$ CMS 180 180 [qu] ^{WD}_ημρ / (^μΔ _η←____)Ωρ 100 8([ub] Preliminary p_{_{T}}^{\mu} > 25 GeV/c Preliminary p_{τ}^{μ} > 25 GeV/c Data - CT14 r/1 CT14+EPPS16 /// CT14+nCTEQ15 Data CT14 CT14+EPPS16 /// CT14+nCTEQ15 Lumi. uncertainty (5.0%) not shown Lumi. uncertainty (5.0%) not shown Ratio to CT14 **Ratio to CT14** 1.2 1.2 0.8 0.8 $-\overline{3}$ -3 -2 -2 I_{CM}

- $\eta_{CM} < 0$ (large x_{Pb}): Results agree with PDF and nPDF calculations
- $\eta_{CM} > 0$ (small x_{Pb}): Results favor the nuclear PDF calculations

CMS

W boson: forward-backward ratio

- Uncertainties fully correlated in η_{CM} cancels (correlations included)
- Exclude (>7 σ) free-nucleon PDF calculations
- Experimental uncertainties smaller than nPDF uncertainties

W boson: charge asymmetry

CMS-PAS-HIN-17-007

- nPDF effects cancel, except for different up / down quark modification
- All (n)PDF calculations reproduce the measurements

W boson: PDF comparison

CMS-PAS-HIN-17-007

- Compute χ^2 test between the measurements and each individual PDF set
- Good agreement between data and EPPS16 nPDF

Summary

Probing gluon nPDF:

 First observation of top quark production in pPb. Opens a new window of opportunities

Probing quark nPDF:

- Observation of nuclear modifications of the (anti) quark PDFs
- Experimental uncertainties smaller than nPDF uncertainties
- Good agreement with EPPS16 nPDF calculations

CMS

σ [nb]

NNLO+NNLL Top++ CT14 NNLO+NNLL Top++

CT10+EPS09

(NLO MCFM) · K_{NNLO+NNLL} (CT14+EPPS16) · K_{NNLO+NNL}

pp, 19.6 fb⁻¹, ($\sqrt{s}=8$ TeV) Data scaled by A $\cdot \frac{\sigma_{NNLO+NNL}(8.16 \text{ TeV})}{\sigma_{NNLO+NNL}(8.16 \text{ TeV})}$

I+jets EPJC 77 (2017) 15

l+jets μ+jets e+jets

pPb, 174 nb⁻¹, (√s_{NN}=8.16 TeV)

Thank you for your attention!

CMS detector

W boson: forward-backward ratio

- Strongly deviate from CT14 calculations favoring EPPS16
- Experimental uncertainties significantly smaller than nPDF uncertainties

16

W boson: charge asymmetry

- Good agreement between measurement at 8.16 TeV and 5.02 TeV after shifting the η_{CM} taking into account the difference in energy

Quark Matter 2018

CMS-PAS-HIN-17-007

W boson: correlation matrix

CMS-PAS-HIN-17-007

16/05/18

• W boson cross section measurement almost uncorrelated in muon pseudorapidity, while a bit correlated in muon charge