

Studies of Baryonic Matter at BM@N JINR

M.Kapishin for BM@N Collaboration

Complex NICA

Parameters of Nuclotron for BM@N experiment:

 $E_{beam} = 1-6 \text{ GeV/u}$; beams: from p to Au; Intensity~ 10^7 c^{-1} (Au)

Heavy Ion Collision experiments

BM@N: $\sqrt{s_{NN}}$ =2.3 - 3.5 GeV

Explore high density baryonic matter

Nuclotron is well suited to study in high density (dominantly baryonic) matter

Baryon-dominated system throughout comparatively long lifetime

Physics possibilities at the Nuclotron

I. In A+A collisions at Nuclotron energies:

- ☐ Opening thresholds for strange and multistrange hyperon production
- strangeness at threshold
- → Need more precise data for strange mesons and hyperons, multi- variable distributions, unexplored energy range
 - ► Collective flows v₁, v₂

II. In p+p, p+n, p+A collisions:

→ adron production in elementary reactions and ,cold' nuclear matter as ,reference' to pin down nuclear effects

Heavy-ions A+A: Study of the EoS with strangeness

Bayonte Catter B C C

- The nuclear dynamics is defined by the EoS (via density dependent NN-interaction)
- **Observables** sensitive to EoS: collective flow (v₁,v₂,...) particle ratios

Direct information – proton v_1, v_2 Alternative information – via strangeness

- □ Experience from SIS and AGS: ratio of K^+ yield Au+Au/C+C at SIS energies and proton v_1, v_2 favor a soft EoS (somewhat sensitive to the details of models)
- → Density dependence of the EoS can be studied in BM@N by a beam energy scan

Heavy-ions A+A: Hypernuclei production

- \square In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities
- Maximal yield predicted for \sqrt{s} =4-5A GeV (stat. model) (interplay of Λ and light nuclei excitation function)
- → BM@N energy range is suited for the search of hypernuclei

BM@N setup

BM@N advantage: large aperture magnet (~1 m gap between poles)

- → fill aperture with coordinate detectors which sustain high multiplicities of particles
- → divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)
- → fill distance between magnet and "far" detectors with coordinate detectors

- Central tracker (Si + GEM) inside analyzing magnet to reconstruct AA interactions
- Outer tracker (CSC, DCH) behind magnet to link central tracks to ToF detectors
- ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T0, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ,e+e-

M.Kapishin

BM@N experiment

BM@N run with Ar and Kr beams in March 2018

Ar beam, T_0 = 3.2 GeV/n

Kr beam, T_0 = 2.3 (2.9) GeV/n

- Central tracker inside analyzing magnet \rightarrow 6 GEM detectors 163 x 45 cm² and forward Si strip detectors for tracking
- ToF system, trigger detectors, hadron and EM calorimeters, outer tracker Program:
- Measure inelastic reactions Ar (Kr) + target \rightarrow X on targets Al, Cu, Sn, Pb
- → Hyperon production measured in central tracker (Si + GEM)
- → Charged particles and nuclear fragments identified with ToF
- → Gamma and multi-gamma states identified in ECAL
- → 130 M events in Ar beam, 50 M events in Kr beam
- + analyze data from previous technical runs with Deuteron and Carbon beams of 3.5 4.6 GeV/n

BM@N set-up in Ar, Kr run, March 2018

Si detectors
barrel detector

CSC chamber

ToF-400 installation

BM@N experiment

New detector components:

6 big GEMs, trigger detectors, 3 Si detectors, CSC chamber, full set of ToF detectors

BM@N setup behind magnet, 2018

GEM and Si detectors for central tracker

Tests of GEM detector 163 x 45 cm²

- 7 GEM detectors of 163 x 45 cm² are produced at CERN workshop
- 2-coordinate Si strip detector with pitch of 95/103 µm, full size of 25 x 25 cm²
- √ detector combined from 4 subdetectors arranged around beam
- ✓ + two smaller vertex Si strip detectors

M.Kapishin

BM@N experiment

Beam Momentum measured with DCH outer tracker

Barronic Catter

at Line out on

Momentum vs. Int(BdL)

Error bars \rightarrow momentum resolution Beam Momentum

momentum = .3*Int(BL)/[sin(alphaX out)+C]

Magnetic field

M.Kapishin

BM@N experiment

Event display of Λ decay in C+C collision

 $\Lambda \rightarrow p\pi^{-}$ decay reconstruction in GEM + Si tracker in C+C interaction, March 2017

Λ in deuteron and carbon beams

Carbon beam run, 4 AGeV

To improve vertex and momentum resolution and reduce background under Λ:

- Need few planes of forward Silicon detectors → 3 planes used in last run
- Need more GEM planes to improve track momentum reconstruction

Methodical Paper published in PEPAN Letters, v.15, p.136, 2018(2): First results from BM@N technical run with deuteron beam 1

ToF-400 and ToF-700 based on mRPC

A proposal for BM@N experiment

to study SRC with hard inverse kinematic reactions

JINR (Dubna): BM@N

Israel: Tel Aviv University

Germany: TUD and GSI

USA: MIT FRANCE: CEA

Objectives:

- identify 2N-SRC events with inverse kinematics
- study isospin decomposition of 2N-SRC
- study A-2 spectator nuclear system

BMN & SRC set-up

Cuts

 $|\theta_{1,2}$ -30°|<6.5°

 $|\Delta \phi_{1,2}| < 7.5^{\circ}$

 $|s,t,u|>2 (GeV/c)^2$

 $P_{miss} > 0.275 \text{ GeV/c}$

Trigger:

T0 · T1 · T2 · TC1 · TC2

Signal rates for 14 days of data taking

Within LAND acceptance

T0 +Target + T1

$$^{12}C + p \rightarrow ^{10}B + pp$$
 np SRC
 $^{12}C + p \rightarrow ^{10}Be + pp$ pp SRC
 $^{12}C + p \rightarrow 2p + ^{10}_{5}B + n$ np SRC
 $^{12}C + p \rightarrow 2p + ^{10}_{4}Be + p$ pp SRC

→ First SRC @ BMN run in March 2018: collected 8 M events

Beam parameters and setup at different stages of BM@N experiment

Year	2016	2017 spring	2018 spring	2020	2021 and later
Beam	d (↑)	С	Ar,Kr, C(SRC)	Au	Au,p
Max.inten sity, Hz	0.5M	0.5M	0.5M	1M	5M
Trigger rate, Hz	5k	5k	10k	10k	20k→50k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 small Si planes	7 GEM full planes + small + large Si planes	7 GEM full planes + small + large Si planes
Experiment al status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics

Present status and next plans

- BM@N scientific program comprises studies of nuclear matter in intermediate range between SIS and NICA/FAIR
- First meeting of BM@N / MPD experiments to form Collaborations
- BM@N technical runs performed with deuteron and carbon beams at energies T₀ = 3.5 - 4.6 AGeV and recently with Ar beam of 3.2 AGeV and Kr beam of 2.3 AGeV
- Measurement of Short Range Correlations performed with inverse kinematics: C beam + H₂ target
- Major sub-systems are operational, but are still in limited configurations
- Algorithms for event reconstruction and analysis are being developed, signals of Λ hyperon decays are reconstructed

Major BM@N plans for Au+Au to start in 2020:

- Collaborate with CBM to produce and install large aperture STS silicon detectors in front of GEM setup
- Extend GEM central tracker and CSC outer tracker to full configuration
- Implement vacuum / helium beam pipe through BM@N setup

Thank you for attention!

Backup slides

Nuclotron and BM@N beam line

GEM tracker: acceptance / momentum resolution / detection efficiency

Phase space / acceptance to primary protons: Au+Au, 4.5 AGeV

Momentum resolution / detection efficiency

BM@N experiment