

Upgrade of the ALICE central barrel tracking detectors: ITS and TPC

	,

Piotr Gasik (Technical University of Munich, Excellence Cluster 'Universe')

on behalf of the ALICE Collaboration

ALICE in Run 1 and Run 2

p-Pb @ Vs_{NN} = 5.02 TeV

pp @ Vs = 0.9, 2.76, 7, 8 TeV

Heavy-Ion Collisions at LHC

ALICE strategy for Run 3 + Run 4:

- 50 kHz Pb-Pb interaction rate (now <10 kHz)
- Experiment upgrades (LS2)
- Collect $\mathcal{L}_{Pb-Pb} > 13 \text{ nb}^{-1}$

"Future prospects for heavy ions at the LHC", J. Jowett, Tue. 9:00

ALICE physics goals

- Heavy-flavour mesons and baryons (down to very low p_T) \rightarrow mechanism of quark-medium interaction
- Charmonium states → dissociation/regeneration as tool to study de-confinement and medium temperature
- Di-leptons from QGP radiation and low-mass vector mesons $\rightarrow \chi$ symmetry restoration, initial temperature and EOS
- High-precision measurement of light and hyper-nuclei → production mechanism and degree of collectivity
- Need MB readout at highest possible rate → no dedicated trigger possible

"The future of high-energy heavy-ion facilities", J.F. Grosse-Oetringhaus, Sat. 10:00

Un-triggered data sample

- Write all Pb-Pb interactions at 50 kHz
- Run 3 + Run 4: increase MB sample x50-100 wrt. Run 2

Improve tracking efficiency and resolution at low $p_{\rm T}$

- Increase tracking granularity
- Reduce material thickness
- Minimize the distance to IP

Preserve particle identification (PID)

- Consolidate and speed-up main ALICE PID detectors

ALICE in Run 3 and Run 4

New Inner Tracking System (ITS)

- Complementary Metal-Oxide-Semiconductor (CMOS) Monolithic Active Pixel Sensor (MAPS) technology
- Improved resolution, less material, faster readout

New Muon Forward Tracker (MFT)

- CMOS Pixels, MAPS technology
- Vertex tracker at forward rapidity

New TPC Readout Chambers (ROCs)

- Gas Electron Multiplier (GEM) technology
- New electronics (SAMPA), continuous readout

New Fast Interaction Trigger (FIT) Detector

- Centrality, event plane
- FoCal proposal (Run 4)
- I.G. Bearden, Poster 66 N. Novitzky, Poster 771
- Measure forward direct photons

Readout upgrade

TOF, TRD, MUON, ZDC, Calorimeters

Integrated Online-Offline system (O²)

Record MB Pb-Pb data at 50 kHz

P. Gasik - ALICE upgrade: ITS & TPC

ALICE Inner Tracking System upgrade

MAPS – Monolithic Active Pixel Sensor

QM2018, 15.05.18

CMOS Monolithic Active Pixel Sensors,

- TowerJazz 180 nm technology
- Primary electron collection efficiency 100%
- Pixel pitch: $29 \times 27 \ \mu m^2$
- Low power consumption ~40 mW/cm²
- Input capacitance C_{in} = 5 fF
- Input charge $Q_{in}(MIP) = 1300 e \rightarrow V = 40 mV$
- Spatial resolution 5 µm
- Event time resolution < 1 μs
 - Radiation hardness: expected in Run 3 and 4 < 300 krad (< 2.0 × 10¹² 1 MeV n_{eq}/cm²)

ALPIDE (ALICE Pixel Detector)

- Developed for the ALICE upgrade (ITS and MFT)
- 130 000 pixels/cm²
- Max. particle rate: ~100 MHz/cm²
- Spatial resolution: ~5 μm
- Thickness: 50 μm for the inner layers
- Fake-hit rate: < 10⁻⁹ per pixel per event

10 m² active silicon area, 12.5×10⁹ pixels

- Closer to IP: $39 \text{ mm} \rightarrow 22 \text{ mm}$
- Thinner (X_0 for innermost layers): ~1.14 % \rightarrow ~0.30 %
- Smaller pixels: $50 \times 425 \ \mu m^2 \rightarrow 27 \times 29 \ \mu m^2$
- Granularity: 20 ch/cm³ → 2000 pixels/cm³
- Readout rate: $1 \text{ kHz} \rightarrow 100 \text{ kHz}$

ITS Layout

- 7 layers (inner/middle/outer): 3/2/2 from R = 22 mm to R = 400 mm
- 192 staves (IL/ML/OL): 48/54/90 .
- Ultra-lightweight support structure and cooling ٠
- Possible to remove and re-install the detector . for maintenance during the yearly shutdowns

ITS Construction

Module Production (CERN, BARI, Liverpool, Pusan, Strasbourg, Wuhan)

- Production is progressing well (20% done) in all sites and will continue till Feb 19
- Production yield 82%, in line with projected value

Stave Production (Berkeley, CERN, Daresbury, Frascati, Nikhef, Torino)

- Production has started in all sites (30 IB staves, 8 OB staves)
- Production will continue till April 2019

Mechanics (Berkeley, CERN, Padua)

Construction of all carbon mechanical structures completed

Readout Electronics (Bergen, Berkeley, CERN, Nikhef, Prague, Kosice)

Development completed. Production has started and will continue till end 2018.

Outer Barrel

Outer Barrel Stave

QM2018, 15.05.18

ALICE Time Projection Chamber upgrade

ALICE TPC

- Diameter: 5 m, length: 5 m
- Gas: Ne-CO₂-N₂, Ar-CO₂
- Max. drift time: ~100 μs
- 18 sectors on each side
- Inner and outer read out chambers: IROC, OROC
- Current detector (Run 1, Run 2):
 - 72 MWPCs
 - ~550 000 readout pads
 - Wire gating grid (GG) to minimize Ion Back-Flow (IBF)
 - Rate limitation: few kHz

Operate TPC at 50 kHz \longrightarrow no gating grid

Continuous Readout with GEMs

TPC Upgrade requirements:

- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- IBF < 1% (ε = 20)
- Energy resolution: $\sigma_E/E < 12\%$ for ⁵⁵Fe
- Stable operation under LHC Run 3 conditions
- Unprecedented challenges in terms of loads and performance

QM2018, 15.05.18

Baseline solution: 4-GEM stack

- Combination of standard (S) and large pitch (LP) GEM foils
- Highly optimized HV configuration
- Result of intensive R&D

P. Gasik - ALICE upgrade: ITS & TPC

Read-Out Chambers (ROCs)

Production of 40 IROCs and 40 OROCs until September 2018

ROC assembly: Yale (IROC), GSI (OROC), HPD Bucharest (OROC); ROC bodies: Heidelberg, Frankfurt, UT Knoxville

Production of 640 GEM foils + spares finishes within the next weeks

GEM QA: CERN, Budapest, Helsinki; GEM framing: Munich, Bonn, GSI, Wayne State

- All chambers thoroughly qualified in terms of:
 - Gas tightness
 - Gain and ion backflow uniformity
 - Stability (long-term irradiation with X-rays)
- Selected chambers tested at the LHC

TPC Readout Electronics

- Newly developed FE SAMPA ASIC (130 nm TSMC CMOS)
 - 32 channels (positive or negative input)
 - PASA preamplifier + 10-bit ADC
 - Programmable conversion gain and peaking times
 - DSP, Memory, High speed e-links
 - Readout mode: continuous or triggered
 - Excellent noise figure of 670 e⁻
 - Production and testing until Sep. 2018
- Front-End Cards
 - 5 SAMPA chips per FEC (3276 FECs in total)
 - System continuously digitizes signals at 5 MHz
 - All ADC values are read out 3.28 TB/s
 - FECs send digitized data over fiber optic links to ALICE Common Readout Units (CRU)
 - Production and testing until Feb. 2019

P. Gasik - ALICE upgrade: ITS & TPC

Tape

ALICE

Performance of the upgraded ALICE Central Barrel

O kHz Pb-Pb Collisions

MC events overlaid on cluster level, using realistic bunch crossing structure

Time is scaled linearly onto the z-position

10 × TPC drift time (= 1 ms)

• Tracks/Clusters from different collisions are shown in different colors.

Detector Performance in Run 3 and Run 4

(En 400 350

300

250

200 150

100

50 0 10⁻¹

ALI-PUB-103021

0.014

0.012 σ_{1/p_T}

0.0

0.008

0.006

0.004

0.002

GEN

᠈_{᠊ᠣ}᠊᠋ᢦ᠊ᡐᠣᠣᠣᠰ᠇^{ᡩ᠊᠋}᠊ᡧ

~~~~~~

0.15

(GeV/c)

<sup>2</sup>ointing Resolution

ALICE

10 p<sub>\_</sub> (GeV/c)

Current ITS

Upgraded ITS





- Improved tracking efficiency
- Improved tracking resolution
- Pointing resolution ×3 better in transverse plane (×6 along beam)

### New TPC Readout Chambers (GEM):

- Preserve momentum resolution for TPC + **ITS tracks**
- Preserve particle identification via dE/dx (arXiv:1805.03234, submitted to NIM A)

6-0-0-0-0-

Standalone tracking efficiency (%) 0 07 07 09 08 00

ALI-PUB-103028

0.014

0.008

0.006

0.004

0.002

(GeV/c)

 $10^{-1}$ 

MWPC

C+ITS combined track

\*\*\*\*\*\*\*\*\*

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1/p<sub>+</sub> (GeV/c)<sup>-1</sup>

1/p<sub>+</sub> (GeV/c)<sup>-1</sup>

0.2 0.25 0.3 0.35 0.4 0.45 0.5

ALICE

10 p<sub>\_</sub> (GeV/c)

Current ITS (data)

Upgraded ITS

## Physics Performance in Run 3 and Run 4



Precise comparison between strange and non-strange D mesons



- Initial temperature from EM radiation
- Cocktail-subtracted distributions  $|\eta| < 0.9$
- Improved uncertainty figures in Run 3 and 4

ALICE

## Summary and Outlook



- About 10-fold increase of Pb-Pb delivered luminosity in Run 3 and Run 4
- ALICE will collect all MB events at 50 kHz Pb-Pb collisions, factor 50-100 more than in Run 2
- New ITS based on ALPIDE MAPS sensor will enhance the tracking and vertexing performance
- Upgraded TPC with GEM ROCs will be read out continuously preserving tracking and PID capabilities
- Production of all parts is ongoing, installation during LHC LS2 starts in December 2018
- The central barrel system upgrade (together with HL-LHC) will give access to physics not reachable up to now





## Thank you!

P. Gasik - ALICE upgrade: ITS & TPC

## **BACKUP SLIDES**



## **ALPIDE Production Status**





## **ITS Readout**





- 2015-16 Readout Components radiation test and selection (Readout Prototype Board RUv0)
- 2017 System integration (DAQ, trigger, control), integration with services (RUv1)
- 2018 Production May-December (RUv2)

## **ITS Mechanics**

- 7 layers (inner/middle/outer): 3/2/2 from R = 22 mm to R = 400 mm
- 192 staves (IL/ML/OL): 48/54/90
- Ultra-lightweight support structure and cooling
- Assembly of staves is ongoing
- Inner and Outer Barrel mechanics ready



### Outer Detector Barrel



### Inner Detector (+Service) Barrel





QM2018, 15.05.18

## TPCU production progress



| <b>ROC</b> components | Needed              | Produced | Fraction |
|-----------------------|---------------------|----------|----------|
| Al-bodies             | 80                  | 80       | 100 %    |
| Padplanes             | 160                 | 160      | 100 %    |
| FEC connectors        | 15'000              | 15'000   | 100 %    |
| HV cables             | 1'300               | 1'300    | 100 %    |
| GEMs                  | 720<br>(10% spares) | 620      | 86 %     |
| GEM frames            | 640                 | 640      | 100 %    |

| Assembly step                            | Goal   | Assembled | Fraction |
|------------------------------------------|--------|-----------|----------|
| Chamber bodies<br>(IROC/OROC)            | 40/40  | 27/22     | 61 %     |
| Padplane + FEC connectors<br>(IROC/OROC) | 40/120 | 40/120    | 100 %    |
| GEM framing                              | 640    | 435       | 68 %     |
| Assembled & Tested ROCs<br>(IROC/OROC)   | 40/40  | 19/16     | 44 %     |





## Tests in ALICE cavern

- Test 2x IROC and 2x OROC at a time
- Chambers are installed in the Miniframe, few meters from the IP
- Installation of the chambers non-trivial
- Tests are performed in the transportation boxes
- **Final HV scheme** (cascaded PS, ammeters, cables, protection resistors, patch boxes)
- Open loop gas system (Ne-CO<sub>2</sub>-N<sub>2</sub>)
- 2017: IROC/03 and OROC/PRR successfully operated for more than 200/500 h
- **2018**: 4xROCs, stable operation (100%) since first "stable beam"
- Swap chambers during TSs
- More chambers can be swapped in case of long enough access







