Isolated photon production in proton-nucleus collisions at forward rapidity

T. Lappi tuomas.v.v.lappi@jyu.fi

University of Jyväskylä, Finland

Quark Matter, Venezia, May 2018

Introduction

Motivation

- ► Initial stage of AA-collision: color field of small-x gluons ⇒ glasma
- ▶ Independently measure this color field with dilute probe:
 - Deep inelastic scattering
 - Proton-nucleus (and pp) at forward rapidity this talk
 - ⇒ Signals for gluon saturation?
 - ⇒ Difference between collinear and small-x evolution?

Outline of this talk: based on work with B. Ducloué & H. Mäntysaari

- ▶ Dilute probe and small-x color field: eikonal scattering
- ▶ Isolated photons Ducloué, T.L. Mäntysaari, arXiv: 1710.02206
- ▶ Other fwd observables: J/Ψ , single inclusive hadrons
- Speculation: this is LO, what could change at NLO?

Eikonal scattering off target of glue

How to measure small-x glue?

- Dilute probe through target color field
- At high energy interaction is eikonal

Eikonal scattering amplitude: Wilson line V

$$V = \mathbb{P} \exp \left\{ -ig \int^{x^+} \!\!\! \mathrm{d}y^+ A^-(y^+,x^-,\mathbf{x})
ight\} \mathop{\approx}\limits_{x^+ o \infty} V(\mathbf{x}) \in \mathrm{SU}(N_{\mathrm{c}})$$

Many observables need color dipole amplitude

$$\mathcal{N}(|\mathbf{x} - \mathbf{y}|) = 1 - \left\langle \frac{1}{N_{c}} \operatorname{Tr} V^{\dagger}(\mathbf{x}) V(\mathbf{y}) \right\rangle$$

from color transparency to saturation

▶ $1/Q_s$ = correlation length, Q_s = gluon intrinsic k_T

Where do we get Wilson lines?

Use here MV^e parametrization from

T.L., Mäntysaari, arXiv:1309.6963

▶ Initial condition for protons at $x_0 = 0.01$

$$N(r) = 1 - e^{-\frac{(r^2 Q_{s0}^2)}{4} \ln\left(\frac{1}{r \Lambda_{QCD}} + e_c \cdot e\right)}$$

(3 fit parameters $Q_{\mathrm{s0}}, e_{\mathrm{c}}, \sigma_{\mathrm{0}} = \mathrm{proton}$ area)

- X < X₀ predicted by leading order, running coupling Balitsky-Kovchegov equation
 (1 flt parameter: scale in α_s)
- ▶ Parameters fit to HERA F₂ data (just like parton distributions are)
- Protons to nuclei: optical Glauber at x₀, no additional free parameters

Small subset of HERA F_2 data

Photon production at forward rapidity

Incoming quark passes through color field and emits photon

► Differential photon multiplicity Gelis, Jalilian-Marian hep-ph/0205037 for large y_γ

$$\frac{\mathrm{d}N^{pA \to \gamma X}}{\mathrm{d}^{2}\mathbf{k}\,\mathrm{d}y_{\gamma}} = \sum_{q} \frac{e_{q}^{2}\alpha_{\mathrm{em}}}{\pi(2\pi)^{3}} \int_{\mathbf{q},x_{p}} z^{2}[1 + (1-z)^{2}] \frac{q(x_{p},\mu^{2})}{\mathbf{k}^{2}} \frac{(\mathbf{k}+\mathbf{q})^{2}}{[z\mathbf{q}-(1-z)\mathbf{k}]^{2}} S(\mathbf{k}+\mathbf{q},x_{g})$$

$$z = \frac{|\mathbf{k}|}{x_{p}\sqrt{s}} e^{y_{\gamma}} \quad x_{p} = \frac{|\mathbf{k}|e^{y_{\gamma}} + |\mathbf{q}|e^{y_{q}}}{\sqrt{s}} \quad x_{g} = \frac{|\mathbf{k}|e^{-y_{\gamma}} + |\mathbf{q}|e^{-y_{q}}}{\sqrt{s}}$$

Photon production at forward rapidity

Incoming quark passes through color field and emits photon

► Differential photon multiplicity Gelis, Jallian-Marian hep-ph/0205037 for large y_γ

$$\frac{\mathrm{d}N^{pA \to \gamma X}}{\mathrm{d}^{2}\mathbf{k}\,\mathrm{d}y_{\gamma}} = \sum_{q} \frac{e_{q}^{2}\alpha_{\mathrm{em}}}{\pi(2\pi)^{3}} \int_{\mathbf{q},x_{p}} z^{2}[1 + (1-z)^{2}] \frac{\mathbf{q}(x_{p},\mu^{2})}{\mathbf{k}^{2}} \frac{(\mathbf{k}+\mathbf{q})^{2}}{[z\mathbf{q}-(1-z)\mathbf{k}]^{2}} S(\mathbf{k}+\mathbf{q},x_{g})$$

$$z = \frac{|\mathbf{k}|}{x_{p}\sqrt{s}} e^{y_{\gamma}} \quad x_{p} = \frac{|\mathbf{k}|e^{y_{\gamma}} + |\mathbf{q}|e^{y_{q}}}{\sqrt{s}} \qquad x_{g} = \frac{|\mathbf{k}|e^{-y_{\gamma}} + |\mathbf{q}|e^{-y_{q}}}{\sqrt{s}}$$

▶ Target at $x_g \ll 1$: $S_{x_g}(\mathbf{x} - \mathbf{y}) = 1 - N_{x_g}(\mathbf{x} - \mathbf{y})$ \Longrightarrow Fourier transform $S(\mathbf{k}, x_g)$

Photon production at forward rapidity

Incoming quark passes through color field and emits photon

▶ Differential photon multiplicity Gelis, Jalilian-Marian hep-ph/0205037 for large y_{γ}

$$\frac{\mathrm{d}N^{pA \to \gamma X}}{\mathrm{d}^{2}\mathbf{k}\,\mathrm{d}y_{\gamma}} = \sum_{q} \frac{e_{q}^{2}\alpha_{\mathrm{em}}}{\pi(2\pi)^{3}} \int_{\mathbf{q},x_{p}} z^{2}[1 + (1-z)^{2}] \frac{q(x_{p},\mu^{2})}{\mathbf{k}^{2}} \frac{(\mathbf{k}+\mathbf{q})^{2}}{[z\mathbf{q}-(1-z)\mathbf{k}]^{2}} S(\mathbf{k}+\mathbf{q},x_{g})$$

$$z = \frac{|\mathbf{k}|}{x_{p}\sqrt{s}} e^{y_{\gamma}} \quad x_{p} = \frac{|\mathbf{k}|e^{y_{\gamma}} + |\mathbf{q}|e^{y_{q}}}{\sqrt{s}} \quad x_{g} = \frac{|\mathbf{k}|e^{-y_{\gamma}} + |\mathbf{q}|e^{-y_{q}}}{\sqrt{s}}$$

- ▶ Target at $x_g \ll 1$: $S_{x_g}(\mathbf{x} \mathbf{y}) = 1 N_{x_g}(\mathbf{x} \mathbf{y})$ \Longrightarrow Fourier transform $S(\mathbf{k}, x_g)$
- ▶ Probe: collinear (large x_p) quark distribution $q(x_p, \mu^2)$
- ▶ Impose isolation cut $\sqrt{(y_{\gamma} y_{q})^{2} + (\phi_{\gamma} \phi_{q})^{2}} > R$

Isolated photon R_{pA}

Ducloué, T.L. Mäntysaari, arXiv:1710.02206

RHIC energy, close to x_0

LHC energy: evolved to $x \ll x_0$

See effects of saturation and small-x evolution

- ▶ Saturation: suppression at low $k_T^{\gamma} \lesssim Q_{\rm s}$: already at x_0 (RHIC)
- **Evolution:** suppression extends to large k_T : "geometric scaling" in action

6/13

$R_{\rm pA}$ for inclusive J/ψ

Same features in different process, calculated with exactly same target color field

- ▶ Suppression at low p_T from saturation
- Forward y @ LHC: also suppression at high p_T from evolution

Here J/Ψ in forward pA collisions

More R_{DA} 's: Drell-Yan, D-mesons: very much same story

 R_{DA} for D-mesons Ducloué, T.L. Mäntysaari, arXiv:1612.04585 (This plot: LHCb data preliminary)

Double ratio: $J/\psi R_{DA}$ over Drell-Yan R_{DA} Ducloué arXiv: 1701.08730 (Very different in CNM energy loss models)

Light hadrons: almost same story

Comparison at forward LHC kinematics:

Photons

 $\pi^0 \Longrightarrow$ suppression not as large

Why is π^0 different than photons?

Kinematics of process is different in LO CGC power counting

LO CGC processes are:

At NLO also light hadron production is $1 \to 2 \implies$ expect effect on $R_{p,A}$

Why nuclear suppression even at large momenta?

Understood for long time, see e.g. Albacete et al. hep-ph/0307179 Kharzeev at al hep-ph/0307037

Initial $x_0 \sim 0.01$ (close to) MV-model — many independent color charges

- Natural agnostic assumption, central limit theorem Gaussian
- ► Favored by fits to HERA data
- ▶ Leads to $xg(x, Q^2) \sim \ln Q^2$ like DGLAP

Evolution develops "anomalous dimension" γ in coordinate or momentum space:

$$N(r) \sim r^{2\gamma}$$
 — $k^2 S(k) \sim k^{-2\gamma}$ — MV: $\gamma = 1$

Consequence for R_{pA} at high p_T :

$${Q_{s,A}}^2 \sim {A^{1/3}}{Q_{s,p}}^2 \quad \& \quad \frac{dN}{d^2{\bm p}} \sim \left(\frac{Q_s^2}{{\cal P}^2}\right)^{\gamma} \quad \Longrightarrow \quad R_{pA} \sim \frac{1}{A^{1/3}}\frac{dN_A/\,d^2{\bm p}}{dN_P/\,d^2{\bm p}} \sim A^{\frac{1}{3}(\gamma-1)}$$

- Nuclear suppression at large p_T results from decrease in anomalous dimension from initial $\gamma=1$ @ $x_0 \implies \gamma < 1$ at small x "geometric scaling"
- ► This happens very fast in LO BK

Speculation: what could happen with NLO evolution?

- ▶ Yet no full NLO calculation of R_{pA} (although progress is being made, need Fourier-positivity + HERA data + NLO BK collinear resummation + control of impact factors)
- ▶ But NLO evolution equations solved

Fate of geometric scaling at NLO

Calculate
$$\gamma(r) \equiv -\frac{\mathrm{d} \ln N(r)}{\mathrm{d} \ln r^2}$$

- ▶ LO: fast to $\gamma \sim$ 0.8
- \blacktriangleright NLO: stay at initial γ

T.L., H. Mäntysaari arXiv:1601.06598

- ► Solid: initial condition
- ▶ Dotted: y = 5 NLO
- ▶ Dot-dashed: y = 5 LO (rc)

Speculation: what could happen with NLO evolution?

- ► Yet no full NLO calculation of R_{pA} (although progress is being made, need Fourier-positivity + HERA data + NLO BK collinear resummation + control of impact factors)
- But NLO evolution equations solved

Fate of geometric scaling at NLO

Calculate
$$\gamma(r) \equiv -\frac{\mathrm{d} \ln N(r)}{\mathrm{d} \ln r^2}$$

- ▶ LO: fast to $\gamma \sim$ 0.8
- \blacktriangleright NLO: stay at initial γ
- ▶ LO y = 0 to y = 5

T.L., H. Mäntysaari arXiv:1601.06598

- ► Solid: initial condition
- ▶ Dotted: y = 5 NLO
- ▶ Dot-dashed: y = 5 LO (rc)

Speculation: what could happen with NLO evolution?

- ► Yet no full NLO calculation of R_{pA} (although progress is being made, need Fourier-positivity + HERA data + NLO BK collinear resummation + control of impact factors)
- But NLO evolution equations solved

Fate of geometric scaling at NLO

Calculate
$$\gamma(r) \equiv -\frac{d \ln N(r)}{d \ln r^2}$$

- ▶ LO: fast to $\gamma \sim$ 0.8
- \blacktriangleright NLO: stay at initial γ
- ▶ LO y = 0 to y = 5
- ▶ NLO y = 0 to y = 5

K., H. Mäntysaari arXiv:1601.06598

- ► Solid: initial condition
- ▶ Dotted: y = 5 NLO
- ▶ Dot-dashed: y = 5 LO (rc)

Conclusions

- By now quite large set of predictions for forward pA in consistent framework: light hadrons (with fragmentation functions), real, virtual photons, heavy quarks
 - Intrinsically LO BK predicts fwd nuclear suppression
- Caveats: calculations so far LO
 - ▶ Kinematics different for q, g vs. $Q\bar{Q}, \gamma, \gamma^*$ processes
 - Expect slower forward suppression from NLO BK evolution (but still no calculation)

Working on understanding these effects (but predicting difficult, particularly in advance)

(but predicting difficult, particularly in davance

▶ Big picture: also multiparticle correlations (see e.g. talk Marquet)

Note on power counting and kinematics

Collinear 2 \rightarrow 2 process, measure only 1 particle: integral over large $\Delta y = \ln \frac{x_2}{x_2}$

- ▶ In the CGC the power counting assumes $\alpha_s \ln \Delta y \sim 1$ ⇒ integrated gluon absorbed in BFKL/BK/JIMWKL-evolved target at $x_<$
- ▶ The gluon recoil also gives intrinsic $\mathbf{k} \implies$ e.g. J/Ψ has p_T distribution at LO in CGC (vs. only at NLO in collinear)

Inclusive J/ψ in LHCb/ALICE kinematics: cross section

Cross sections for pPb Ducloué, T.L. Mäntysaari 1503.02789

Most of normalization uncertainty from scale in collinear PDF, and in $\alpha_{\rm S}$