Isolated photon production in proton-nucleus collisions at forward rapidity

T. Lappi
tuomas.v.v.lappi@jyu.fi

University of Jyväskylä, Finland
Quark Matter, Venezia, May 2018

erc

UNIVERSTTY OF JYVÄSKYLÄ

Introduction

Motivation

- Initial stage of AA-collision: color field of small- x gluons \Longrightarrow glasma
- Independently measure this color field with dilute probe:
- Deep inelastic scattering
- Proton-nucleus (and pp) at forward rapidity - this talk
\Rightarrow Signals for gluon saturation?
\Rightarrow Difference between collinear and small-x evolution?
Outline of this talk: based on work with B. Ducloué \& H. Mäntysaari
- Dilute probe and small-x color field: eikonal scattering
- Isolated photons Ducloué, T.L. Mäntysaari, arXiv:1710.02206
- Other fwd observables: J / Ψ, single inclusive hadrons
- Speculation: this is LO, what could change at NLO?

Eikonal scattering off target of glue

How to measure small-x glue?

- Dilute probe through target color field
- At high energy interaction is eikonal

Eikonal scattering amplitude: Wilson line V

$$
V=\mathbb{P} \exp \left\{-i g \int^{x^{+}} \mathrm{d} y^{+} A^{-}\left(y^{+}, x^{-}, \mathbf{x}\right)\right\} \underset{x^{+} \rightarrow \infty}{\approx} V(\mathbf{x}) \in \operatorname{SU}\left(N_{c}\right)
$$

- Many observables need color dipole amplitude

$$
\mathcal{N}(|\mathbf{x}-\mathbf{y}|)=1-\left\langle\frac{1}{N_{c}} \operatorname{Tr} V^{\dagger}(\mathbf{x}) V(\mathbf{y})\right\rangle
$$

from color transparency to saturation

- $1 / Q_{\mathrm{s}}=$ correlation length,$~ Q_{\mathrm{s}}=$ gluon intrinsic k_{T}

Where do we get Wilson lines?

Use here MV^{\ominus} parametrization from
T.L., Mäntysaari, arXiv: 1309.6963

- Initial condition for protons at $x_{0}=0.01$

$$
N(r)=1-e^{-\frac{\left(r^{2} Q_{0}^{2}\right)}{4} \ln \left(\frac{1}{r_{Q C D}}+e_{C} \cdot e\right)}
$$

(3 fit parameters $Q_{50}, e_{c}, \sigma_{0}=$ proton area)

- $x<x_{0}$ predicted by leading order, running coupling Balitsky-Kovchegov equation
(1 fit parameter: scale in α_{s})
- Parameters fit to HERA F_{2} data (just like parton distributions are)
- Protons to nuclei: optical Glauber at x_{0}, no additional free parameters

Small subset of HERA F_{2} data

Photon production at forward rapidity

- Incoming quark passes through color field and emits photon

- Differential photon multiplicity Gelis, Jalilian-Marian hep-ph/0205037 for large y_{γ}

$$
\begin{aligned}
\frac{\mathrm{d} N^{\rho A \rightarrow \gamma X}}{\mathrm{~d}^{2} \mathbf{k} \mathrm{~d} y_{\gamma}} & =\sum_{q} \frac{e_{q}^{2} \alpha_{e m}}{\pi(2 \pi)^{3}} \int_{\mathbf{q}, x_{p}} z^{2}\left[1+(1-z)^{2}\right] \frac{q\left(x_{p}, \mu^{2}\right)}{\mathbf{k}^{2}} \frac{(\mathbf{k}+\mathbf{q})^{2}}{[z \mathbf{q}-(1-z) \mathbf{k}]^{2}} S\left(\mathbf{k}+\mathbf{q}, x_{g}\right) \\
z & =\frac{|\mathbf{k}|}{x_{p} \sqrt{s}} e^{y_{\gamma}} \quad x_{p}=\frac{|\mathbf{k}| e^{y_{\gamma}}+|\mathbf{q}| e^{y_{q}}}{\sqrt{s}} \quad x_{g}=\frac{|\mathbf{k}| e^{-y_{\gamma}}+|\mathbf{q}| e^{-y_{q}}}{\sqrt{s}}
\end{aligned}
$$

Photon production at forward rapidity

- Incoming quark passes through color field and emits photon

- Differential photon multiplicity Gelis, Jalilian-Marian hep-ph/0205037 for large y_{γ}

$$
\begin{aligned}
\frac{d N^{p A \rightarrow \gamma X}}{d^{2} \mathbf{k} d y_{\gamma}} & =\sum_{q} \frac{e_{q}^{2} \alpha_{\mathrm{em}}}{\pi(2 \pi)^{3}} \int_{\mathbf{q}, x_{p}} z^{2}\left[1+(1-z)^{2}\right] \frac{q\left(x_{p}, \mu^{2}\right)}{\mathbf{k}^{2}} \frac{(\mathbf{k}+\mathbf{q})^{2}}{[z \mathbf{q}-(1-z) \mathbf{k}]^{2}} S\left(\mathbf{k}+\mathbf{q}, x_{g}\right) \\
z & =\frac{|\mathbf{k}|}{x_{p} \sqrt{s}} e^{y_{\gamma}} \quad x_{p}=\frac{|\mathbf{k}| e^{y_{\gamma}}+|\mathbf{q}| e^{y_{q}}}{\sqrt{s}} \quad x_{g}=\frac{|\mathbf{k}| e^{-y_{\gamma}}+|\mathbf{q}| e^{-y_{q}}}{\sqrt{s}}
\end{aligned}
$$

- Target at $x_{g} \ll 1: \quad S_{x_{g}}(\mathbf{x}-\mathbf{y})=1-N_{x_{g}}(\mathbf{x}-\mathbf{y}) \Longrightarrow$ Fourier transform $S\left(\mathbf{k}, x_{g}\right)$

Photon production at forward rapidity

- Incoming quark passes through color field and emits photon

- Differential photon multiplicity Gelis, Jalilian-Marian hep-ph/0205037 for large y_{γ}

$$
\begin{aligned}
\frac{\mathrm{d} N^{\rho A \rightarrow \gamma X}}{\mathrm{~d}^{2} \mathbf{k} \mathrm{~d} y_{\gamma}} & =\sum_{q} \frac{e_{q}^{2} \alpha_{\mathrm{em}}}{\pi(2 \pi)^{3}} \int_{\mathbf{q}, x_{\rho}} z^{2}\left[1+(1-z)^{2}\right] \frac{q\left(x_{p}, \mu^{2}\right)}{\mathbf{k}^{2}} \frac{(\mathbf{k}+\mathbf{q})^{2}}{[z \mathbf{q}-(1-z) \mathbf{k}]^{2}} S\left(\mathbf{k}+\mathbf{q}, x_{g}\right) \\
z & =\frac{|\mathbf{k}|}{x_{p} \sqrt{s}} e^{y_{\gamma}} \quad x_{p}=\frac{|\mathbf{k}| e^{y_{\gamma}}+|\mathbf{q}| e^{y_{q}}}{\sqrt{s}} \quad x_{g}=\frac{|\mathbf{k}| e^{-y_{\gamma}}+|\mathbf{q}| e^{-y_{q}}}{\sqrt{s}}
\end{aligned}
$$

- Target at $x_{g} \ll 1: \quad S_{x_{g}}(\mathbf{x}-\mathbf{y})=1-N_{x_{g}}(\mathbf{x}-\mathbf{y}) \Longrightarrow$ Fourier transform $S\left(\mathbf{k}, x_{g}\right)$
- Probe: collinear (large x_{p}) quark distribution $q\left(x_{p}, \mu^{2}\right)$
- Impose isolation cut $\sqrt{\left(y_{\gamma}-y_{q}\right)^{2}+\left(\phi_{\gamma}-\phi_{q}\right)^{2}}>R$

Isolated photon $R_{\text {pA }}$

Ducloué, T.L. Mäntysaari, arXiv: 1710.02206

RHIC energy, close to x_{0}

LHC energy: evolved to $x \ll x_{0}$

See effects of saturation and small-x evolution

- Saturation: suppression at low $k_{T}{ }^{\gamma} \lesssim Q_{s}$: already at x_{0} (RHIC)
- Evolution: suppression extends to large k_{T} : "geometric scaling" in action

$R_{p A}$ for inclusive J / ψ

Same features in different process, calculated with exactly same target color field

- Suppression at low p_{T} from saturation
- Forward y @ LHC: also suppression at high p_{T} from evolution

Here J / Ψ in forward pA collisions

More $R_{p A}$'s: Drell-Yan, D-mesons: very much same story

$R_{\text {pA }}$ for D-mesons
Ducloué, T.L. Mäntysaari, arXiv:1612.04585
(This plot: LHCb data preliminary)

Double ratio:
$J / \psi R_{\text {pA }}$ over Drell-Yan $R_{\text {pA }}$
Ducloué arXiv:1701. 08730
(Very different in CNM energy loss models)

Light hadrons: almost same story

Comparison at forward LHC kinematics:

Photons

$\pi^{0} \Longrightarrow$ suppression not as large

Why is π^{0} different than photons?

Kinematics of process is different in LO CGC power counting
LO CGC processes are:

Pions

$1 \rightarrow 1$ kinematics:
Large pion p_{T}
always from target gluon $k_{T} \gg Q_{\mathrm{S}}$

Photons

$1 \rightarrow 2$ kinematics:
Even large photon p_{T} can have target gluon $k_{T} \lesssim Q_{\mathrm{s}}$ \Longrightarrow more suppression

At NLO also light hadron production is $1 \rightarrow 2 \Longrightarrow$ expect effect on $R_{p A}$

Why nuclear suppression even at large momenta?

Understood for long time, see e.g. Albacete et al. hep-ph/0307179 Kharzeev at al hep-ph/0307037
Initial $x_{0} \sim 0.01$ (close to) MV-model - many independent color charges

- Natural agnostic assumption, central limit theorem Gaussian
- Favored by fits to HERA data
- Leads to $x g\left(x, Q^{2}\right) \sim \ln Q^{2}$ like DGLAP

Evolution develops "anomalous dimension" γ in coordinate or momentum space:

$$
N(r) \sim r^{2 \gamma}-k^{2} S(k) \sim k^{-2 \gamma}-\mathrm{MV}: \gamma=1
$$

Consequence for $R_{p A}$ at high p_{T} :

$$
Q_{\mathrm{s}, \mathrm{~A}}{ }^{2} \sim A^{1 / 3} Q_{\mathrm{s}, \mathrm{p}}{ }^{2} \quad \& \quad \frac{\mathrm{~d} N}{\mathrm{~d}^{2} \mathbf{p}} \sim\left(\frac{Q_{\mathrm{s}}^{2}}{p^{2}}\right)^{\gamma} \quad \Longrightarrow \quad R_{p A} \sim \frac{1}{A^{1 / 3}} \frac{\mathrm{~d} N_{A} / d^{2} \mathbf{p}}{\mathrm{~d} N_{p} / d^{2} \mathbf{p}} \sim A^{\frac{1}{3}(\gamma-1)}
$$

- Nuclear suppression at large p_{T} results from decrease in anomalous dimension from initial $\gamma=1$ @ $x_{0} \Longrightarrow \gamma<1$ at small x "geometric scaling"
- This happens very fast in LO BK

Speculation: what could happen with NLO evolution?

- Yet no full NLO calculation of $R_{p A}$ (although progress is being made, need Fourier-positivity + HERA data + NLO BK collinear resummation + control of impact factors)
- But NLO evolution equations solved

Fate of geometric scaling at NLO

Calculate $\gamma(r) \equiv-\frac{\mathrm{d} \ln N(r)}{\mathrm{d} \ln r^{2}}$

- LO: fast to $\gamma \sim 0.8$
- NLO: stay at initial γ

T.L., H. Mäntysaari arXiv : 1601.06598
- Solid: initial condition
- Dotted: $y=5$ NLO
- Dot-dashed: $y=5$ LO (rc)

Speculation: what could happen with NLO evolution?

- Yet no full NLO calculation of $R_{p A}$ (although progress is being made, need Fourier-positivity + HERA data + NLO BK collinear resummation + control of impact factors)
- But NLO evolution equations solved

Fate of geometric scaling at NLO

Calculate $\gamma(r) \equiv-\frac{\mathrm{d} \ln N(r)}{\mathrm{d} \ln r^{2}}$

- LO: fast to $\gamma \sim 0.8$
- NLO: stay at initial γ
- LO $y=0$ to $y=5$

T.L., H. Mäntysaari arXiv : 1601.06598
- Solid: initial condition
- Dotted: $y=5$ NLO
- Dot-dashed: $y=5$ LO (rc)

Speculation: what could happen with NLO evolution?

- Yet no full NLO calculation of $R_{p A}$ (although progress is being made, need Fourier-positivity + HERA data + NLO BK collinear resummation + control of impact factors)
- But NLO evolution equations solved

Fate of geometric scaling at NLO
Calculate $\gamma(r) \equiv-\frac{d \ln N(r)}{d \ln r^{2}}$

- LO: fast to $\gamma \sim 0.8$
- NLO: stay at initial γ
- LO $y=0$ to $y=5$
- NLO $y=0$ to $y=5$

Conclusions

- By now quite large set of predictions for forward pA in consistent framework: light hadrons (with fragmentation functions), real, virtual photons, heavy quarks
- Intrinsically LO BK predicts fwd nuclear suppression
- Caveats: calculations so far LO
- Kinematics different for q, g vs. $Q \bar{Q}, \gamma, \gamma^{*}$ processes
- Expect slower forward suppression from NLO BK evolution (but still no calculation) Working on understanding these effects (but predicting difficult, particularly in advance)
- Big picture: also multiparticle correlations (see e.g. talk Marquet)

Note on power counting and kinematics

Collinear $2 \rightarrow 2$ process, measure only 1 particle: integral over large $\Delta y=\ln \frac{x_{>}}{x_{<}}$

- In the CGC the power counting assumes $\alpha_{\mathrm{s}} \ln \Delta y \sim 1$
\Longrightarrow integrated gluon absorbed in BFKL/BK/JIMWKL-evolved target at $x_{<}$
- The gluon recoil also gives intrinsic $\mathbf{k} \Longrightarrow$ e.g. J / Ψ has p_{T} distribution at LO in CGC (vs. only at NLO in collinear)

Inclusive J / ψ in LHCb/ALICE kinematics: cross section

Cross sections for pPb Ducloué, T.L. Mäntysaari 1503.02789

Most of normalization uncertainty from scale in collinear PDF, and in $\alpha_{\text {s }}$

