Prompt Photon Production at LHCb

Tom Boettcher on behalf of the LHCb collaboration

Department of Physics and Laboratory for Nuclear Science Massachusetts Institute of Technology

Quark Matter May 14, 2018

Gluon Saturation

At high number density, expect gluon recombination to compete with gluon splitting, leading to saturation of the gluon PDF

2/14

Saturation Scale

- Saturation effects are important when $1/Q \gtrsim$ distance between partons
- Characterized by the saturation scale $Q_{\rm s}^2$
- Probe sees a Lorentz-contracted disk of area $\sim \pi A^{2/3}$

Ideal observables will be sensitive to low-x gluons at low Q^2 in heavy nuclei

Direct Photons

- Direct photons sensitive to gluon PDF
- LHCb has access to direct photon production at low x in unexplored kinematic territory
- Low- $p_{\rm T}$ ($\lesssim 5$ GeV) direct photons are most sensitive

The LHCb Detector

- collisions
- Participated in 2013 and 2016 *p*Pb runs
- Began participating in AA runs in 2015

- Tracker ECAL HCAL Muse
- Tracker, ECAL, HCAL, Muon
- High precision vertex locator (VELO)
- Ring imaging Cherenkov (RICH)

Strategy

Converted photons

- Better energy resolution than ECAL photons at low- $p_{\rm T}$
- No backgrounds from merged π^0 s

Isolation

- Define a cone of $\Delta R := \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.5$ around each converted photon
- Combine with converted photons with ECAL photons in cone to find contribution from π^0 decays
- Cut on $\sum_{\text{cone}} p_{\text{T}}$ to enhance direct photon signal
- \blacksquare Use unisolated pp data as a control

Double Ratio R_{γ}

Report results in terms of the double ratio R_{γ}

$$R_{\gamma} = \frac{(\gamma^{\rm inc}/\gamma^{\pi^0})_{\rm Data}}{(\gamma^{
m dec}/\gamma^{\pi^0})_{\rm MC}}$$

Similar to the strategy used in ALICE direct photon studies

ALICE, arXiv:1803.09857

Photon Reconstruction

- Study photons with $1 < p_T < 5$ GeV and $2.5 < \eta < 4.0$
- Use only electrons without associated VELO hits to improve resolution

π^0 yield extraction

- Extract π^0 component by fitting the $\gamma^{\text{conv}} + \gamma^{\text{ECAL}}$ mass spectrum
- Must be corrected for ECAL photon efficiency
- Data-driven study using $(B^+ \to \chi_{c1}(\to \gamma J\psi)K^+)$ / $(B^+ \to J/\psi K^+)$ in progress
- Consistent with MC to within 6% (BR uncertainty)

η/π^0

- Need to know the fraction of decay photons originating from π^0 decays
- Can check by measuring η/π^0
- Only $\sim 15\%$ of decay photons are from η decays, so this leads to percent level effects on R_{γ}

Control Results

- Use 13 TeV pp MC for the denominator in each double ratio
- Reweight to correct for differences in multiplicity and underlying π^0 $p_{\rm T}$ spectrum
- Consistency between 13 TeV and 5 TeV means we can use control studies to drive down uncertainties in photon efficiency

Observables

- Saturation causes large suppression in R_{pPb} , but the direct photon contribution in inclusive pp is small and will require additional work to drive down systematics
- Observables such as $R_{\rm FB} := Y_{p{\rm Pb}}^{asym}$ and $R_{\gamma}^{p{\rm Pb}}/R_{\gamma}^{{\rm Pb}p}$ can be measured more precisely and are possibly just as interesting

Other LHCb Studies

- LHCb also studying direct $\gamma + h$ correlations
- See poster by Cesar Luiz da Silva for more details

Summary

- Making progress towards measurements of direct photon production at LHCb
- Control studies show that we have a good understanding of systematic effects
- Observables such as $R_{\rm FB}$ and $R_{\gamma}^{\rm pPb}/R_{\gamma}^{\rm Pbp}$ allow for more precise but potentially interesting measurements. Theory input welcome!
- LHCb has enormous potential to study saturation physics, and this is just the beginning!