ALICE results
on system-size dependence of
charged-particle multiplicity density
in p-Pb, Pb-Pb and Xe-Xe collisions

Beomkyu Kim
For the ALICE Collaboration

16th May, 2018, QM2018, Venice, Italy
Charged-particle multiplicity density

- Study interplay between soft and hard QCD

AA collisions
- Direct relation to the initial ϵ of QGP\(^1\)
 \[\epsilon = \frac{dE_T/dy}{\tau_0 \pi R^2} \approx \frac{3}{2} \langle m_T \rangle \frac{dN_{ch}/d\eta}{\tau_0 \pi R^2} > 1\, \text{GeV}/\text{fm}^3 \]

pp collisions
- Reference data for nuclear effect
- Study MPI in high N_{ch} collisions

p–Pb collisions
- Discriminate between FSR in AA and ISR of nuclei themselves

- QGP-like effects even in pp and p–Pb collisions at LHC energies
 proton (A=1) → p–Pb ———- Xe (A=129) ——— Pb (A=208)

- System size and $\langle dN_{ch}/d\eta \rangle \rightarrow$ starting of the story

\(^1\)See the discussion: system-size dependence of $\langle dN_{ch}/d\eta \rangle$ at $\sqrt{s_{NN}} = 5.02$ TeV at QM 2017 by Christian Holm Christensen
A Large Ion Collider Experiment

V0 (Scintillator hodoscopes)
- triggers forward activity
- $-3.7 < \eta < -1.7$, $2.8 < \eta < 5.1$

SPD (Silicon Pixel Detector)
- Two-layer silicon detector
- counting tracklets at mid rapidity
- $-2 < \eta < 2$

FMD (Forward Mult. Detector)
- three sets of Si strip sensors
- counting N_{ch} at forward rapidity
- $-3.7 < \eta < -1.7$, $1.7 < \eta < 5.1$

ZDC (Zero Degree Calorimeter)
- measuring E of spectator nucleons
- $\eta \sim \pm 10$

- 18 detectors, sensitivity at low p_T, excellent PID
\[\langle dN_{\text{ch}}/d\eta \rangle \text{ in pp collisions} \]

- Inclusive study: \(\text{INEL} \propto s^{0.102}, \text{NSD} \propto s^{0.114} \) and \(\text{INEL}_{>0} \propto s^{0.114} \)
- Multiplicity dependence study\(^2\)
 - \(\langle dN_{\text{ch}}/d\eta \rangle \) for different multiplicity classes
 - The evolution of \(\langle dN_{\text{ch}}/d\eta \rangle \) with \(\sqrt{s} \): steeper for higher multiplicity class (MPI)

\(^1\)INEL requiring at least one charged particle in \(|\eta| = 1 \)
\(^2\)“Multiplicity dependence study of the \(\eta \)-density distribution of charged particles in pp collisions with ALICE” by Prabhakar Palni
\[\langle dN_{ch}/d\eta \rangle \text{ in } p - \text{Pb collisions} \]

All models lie within 15\% of data

 - strong \(b \) dependence of parton shadowing
 - combines pQCD and soft QCD
 - reproduces magnitude and shape for Pb-going side

 - collective effects like flow included
 - reproduces Pb-going side

- **EPOS 3** (Phys. Rev. C89 (2014) 064903)
 - includes a full viscous hydrodynamical simulation
 - only the most forward part in the Pb-going side

 - saturation based models
 - perform better in \(\eta_{lab} > -1.3 \)
Impact parameter (b)

- The degree of geometrical overlap
- Centrality: fraction of geometrical cross-section
- $N_{\text{part}}, N_{\text{coll}}$

Centrality estimation for Xe–Xe

- Deformation of the nuclear density considered
- Multiplicity with the V0 detector
- NBD Glauber fit coupled to a two component model
\[\langle \frac{dN_{\text{ch}}}{d\eta} \rangle \text{ AND } N_{\text{ch}}^{\text{tot}} \text{ IN Pb – Pb AND Xe – Xe COLLISIONS} \]

arXiv:1805.04432

\[\frac{\langle dN_{\text{ch}}/d\eta \rangle}{\langle N_{\text{part}} \rangle} \text{ and } \frac{2}{\langle N_{\text{part}} \rangle} N_{\text{ch}}^{\text{tot}} \]

- for the most 5% central collisions
- Xe–Xe result is in agreement with the trend
- A stronger rise w.r.t. \(\sqrt{s_{\text{NN}}} \) than for pp
- At \(|\eta| < 0.5\) p–Pb fits with INEL pp points
\[\frac{2}{\langle N_{\text{part}} \rangle} \langle dN_{\text{ch}}/d\eta \rangle \text{ AND } \frac{2}{\langle N_{\text{part}} \rangle} N_{\text{ch}}^{\text{tot}} \text{ AS A FUNCTION OF } \langle N_{\text{part}} \rangle \]

Data are scaled to \sqrt{s}, $\sqrt{s_{NN}} = 5.44$ TeV (prev.) to match with Xe–Xe results.

- ALICE data decreasing by 2 from the most central to the peripheral
- smoothly connect to pp and p–Pb
- Xe–Xe shapes exceed Pb–Pb at similar $\langle N_{\text{part}} \rangle$ for the top 10% central collisions
- RHIC data show hint of same behaviour
Scaling of $\frac{2}{\langle N_{\text{part}} \rangle} \langle dN_{\text{ch}} / d\eta \rangle$

Different scalings for particle production

1. Power law function

2. Two component model

3. Core and corona model

4. Quark-Glauber parametrisation

- using wounded constituent quarks
- $N_q = 3$ and 5
- A scaling violation for the 0–5% centrality range in Xe–Xe collisions
 (0-1-2-3-4-5% binning)
$\frac{2}{\langle N_{\text{part}} \rangle} \langle dN_{\text{ch}} / d\eta \rangle$ AND MODELS IN Xe – Xe COLLISIONS

ALICE
- initial state by HIJING
- and then hydrodynamical evolution

PYTHIA/Angantyr (JHEP 10 (2016) 139)
- performing each nucleon-pair (parton level)
- Lund strings hadronised as an ensemble

- viscous hydrodynamics coupled to a hadronic cascade model

rc-BK, KLN, ASW1, IP-Glasma2 and EKRT3
- saturation-inspired models to limit N_{parton}

All models describe data within ±20%

\(dN_{\text{ch}}/d\eta \) vs \(\eta \) and models for 0–5\% central Xe–Xe collisions

Models Compared

HIJING
- Good match in mid, overestimate at forward \(\eta \)
- (due to large value of \(s_g \))

AMPT and PYTHIA/Angantyr
- fairly good, slight overestimate at forward \(\eta \)

EPOS LHC
- underestimate data overall

rcBK-MC
- overall overestimation

KLN
- matches in mid \(\eta \), not true for forward \(\eta \)

IP-Glasma
- wider than data

Graph Details

- **Graph Title**: \(Xe-Xe, \sqrt{s_{\text{NN}}} = 5.44 \text{ TeV} \)
- **Axes**: \(\eta \) vs \(dN_{\text{ch}}/d\eta \)
- **Models Shown**:
 - ALICE
 - HIJING 2.1, \(s_g = 0.28 \)
 - AMPT
 - PYTHIA/Angantyr
 - EPOS-LHC
 - rcBK-MC
 - KLN, \(\lambda = 0.252 \)
 - IP-Glasma + subnucleon fluct.

Legend

- **Legend Entries**:
 - ALICE
 - HIJING 2.1, \(s_g = 0.28 \)
 - AMPT
 - PYTHIA/Angantyr
 - EPOS-LHC
 - rcBK-MC
 - KLN, \(\lambda = 0.252 \)
 - IP-Glasma + subnucleon fluct.
Charged-particle multiplicity density studies on various collision systems and energies in centre of mass

pp and p–Pb collisions

- Compared to various theoretical models: for p-Pb better agreement with saturation based models
- $|\eta| < 0.5 \langle dN_{ch}/d\eta \rangle (|\eta| < 0.5)$ in p–Pb fits with INEL pp points

Pb–Pb and Xe–Xe collisions

- The high statistics distributions are useful to constrain the available models
- $\frac{2}{\langle N_{part} \rangle} \langle dN_{ch}/d\eta \rangle$ and $\frac{2}{\langle N_{part} \rangle} N_{ch}^{\text{tot}}$ for the top 5% central Xe–Xe collisions in agreement with the previous AA power-law trend
- Steep rise of $\frac{2}{\langle N_{part} \rangle} \langle dN_{ch}/d\eta \rangle$ and $\frac{2}{\langle N_{part} \rangle} N_{ch}^{\text{tot}}$, and N_{part}-scaling violation for the 0–5% central Xe-Xe
Backup
Woods-Saxon distributions

Xe ion (deformed)

\[\rho(r, \vartheta) = \rho_0 \frac{1}{1 + \exp \left(\frac{r - R(\vartheta)}{a} \right)} \]

- \(\rho_0 \): the nucleon density
- The nuclear skin thickness \(a = 0.59 \pm 0.07 \) fm \(^1\)
- Nuclear radius \(R(\vartheta) = R_0 \left[1 + \beta_2 \, Y_{20}(\vartheta) \right] \)

Pb ion (spherical)

\[\rho(r, \vartheta) = \rho_0 \frac{1}{1 + \exp \left(\frac{r - R}{a} \right)} \]

- \(\rho_0 \): the nucleon density
- The nuclear skin thickness \(a = 0.546 \pm 0.01 \) fm
- Nuclear radius \(R = 6.62 \pm 0.06 \) fm

When the squared momentum transfer is much less than \sqrt{s}

$$t = (p_a - p_c)^2 \ll \sqrt{s}$$

- Help us understand QCD in the non-perturbative regime
 ($t \sim 0$ or $q^2 < \Lambda^2_{\text{QCD}}$)
- By Regge theory 1,2,3, diffraction proceeds via the exchange of Pomerons
 (gg leading order + ggg next leading order + \cdots)

SD, DD and ND

SD

DD

ND
N_{ch} in pp collisions

\[\langle dN_{ch} / d\eta \rangle \propto s^{0.103} \]

\[\langle dN_{ch} / d\eta \rangle_{>0} \propto s^{0.111} \]
\(N_{\text{ch}} \) in Xe – Xe collisions

- HIJING using gluon shadowing parameter \(s_g = 0.28 \)
- EPOS based on Gribov-Regge theory incorporated with collected effect
- Saturation-inspired models: rcBK-MC, Armesto, Kharzeev and EKRT
N_{ch} in pp collisions

- Published multiplicity papers

<table>
<thead>
<tr>
<th>Type</th>
<th>\sqrt{s} (TeV)</th>
<th>paper</th>
</tr>
</thead>
</table>

- Reference data to study nuclear effect
 - in nucleus–nucleus
 - in proton–nucleus collisions

- Big contribution from non-perturbative QCD processes
 - INEL1 : ND + SD + DD + CD ...
 - NSD : ND + DD (to ignore large uncertainty from SD)
 - $\text{INEL}_{>0}$: INEL + at least one activity in $|\eta| = 1$
 (effective filter for SD and DD events)

1INEL = ND(\sim 70 %) + SD (\sim 20 %) + DD (\sim 10 %) + CD (< 1 %) arXiv:1208.4968
Published (ongoing) multiplicity papers

<table>
<thead>
<tr>
<th>Type</th>
<th>$\sqrt{s_{NN}}$ (TeV)</th>
<th>paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Pb</td>
<td>5.02</td>
<td>PRL 110 (2013) 032301</td>
</tr>
<tr>
<td></td>
<td>8.16</td>
<td>preliminary</td>
</tr>
</tbody>
</table>

Valuable tool to discriminate between
- final state effects in nucleus–nucleus
- initial state effect of nuclei themselves

N_{ch}
- Discriminate the initial and final state effects
- A tool to study the various models of gluon saturation\(^1\)
- Providing constraints to the initial state and small Bjorken-x modeling

\(^1\) Different descriptions of the upper limit in growth of the parton density
\[\langle dN_{\text{ch}}d\eta \rangle \text{ in Pb – Pb and Xe – Xe collisions} \]

- Published (and ongoing) multiplicity papers

<table>
<thead>
<tr>
<th>Type</th>
<th>(\sqrt{s_{\text{NN}}}) (TeV)</th>
<th>paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe-Xe</td>
<td>5.44</td>
<td></td>
</tr>
</tbody>
</table>

- \(N_{\text{ch}} \): A key observable in the QGP (initial energy density)
- Impact parameter \((b) \): The degree of geometrical overlap
- Centrality: Experimental proxy of \(b \)
- \(N_{\text{part}} \): the number of nucleons participating in the collision
- \(N_{\text{coll}} \): the number of binary nucleon-nucleon collisions among the participant nucleons
A Large Ion Collider Experiment

- 17 different detectors, Low p_T sensitivity, excellent PID

<table>
<thead>
<tr>
<th>Trigger detectors</th>
<th>$\eta_{\text{min}} / \eta_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPD</td>
<td>-2/2</td>
</tr>
<tr>
<td>V0</td>
<td>2.8/5.1 -3.7/-1.7</td>
</tr>
<tr>
<td>AD</td>
<td>4.8/6.3 -7/-4.9</td>
</tr>
<tr>
<td>ZDC</td>
<td>$\sim \pm 10$</td>
</tr>
</tbody>
</table>

SPD (Silicon Pixel Detector)
- Innermost two-layer silicon detector
- $r = 3.9, 7.6$ cm
- Triggers central activity

V0 (Scintillator hodoscopes)
- Triggers forward activity
- $z = -0.9, 3.3$ m

AD (Alice Diffraction)
- Scintillation counters
- $z = -19.5, 17$ m

ZDC:
A Large Ion Collider Experiment

- 17 different detectors, Low p_T sensitivity, excellent PID

<table>
<thead>
<tr>
<th>Data taking detectors</th>
<th>$\eta_{\text{min}} / \eta_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A side</td>
<td>C side</td>
</tr>
<tr>
<td>ITS</td>
<td>$-1.4 / 1.4$</td>
</tr>
<tr>
<td>TPC</td>
<td>$-0.9 / 0.9$</td>
</tr>
<tr>
<td>FMD</td>
<td>$1.7 / 5.1$</td>
</tr>
<tr>
<td></td>
<td>$-3.4 / -1.7$</td>
</tr>
</tbody>
</table>

- ITS (Inner Tracking System)
 - 6 layers of Si detectors
 - Containing SPD

- TPC (Time Projection Chamber)
 - Large cylindrical detector
 - $-250 < z < 250$ cm
 - $86 < r < 250$ cm
 - 558 k readout channels

- FMD (Forward Multiplicity Detector)
 - Two sets of Si strip sensors
 - close to V0 detectors

ITS = SPD + SDD + SSD
\[
\frac{2}{\langle N_{\text{part}} \rangle} \langle dN_{\text{ch}}/d\eta \rangle \text{ AND } \frac{2}{\langle N_{\text{part}} \rangle} N_{\text{ch}}^{\text{tot}} \text{ AS A FUNCTION OF CENTRALITY}
\]

Data are scaled to \(\sqrt{s} \), \(\sqrt{s_{\text{NN}}} = 5.44 \text{ TeV (prev.)} \) to match with Xe–Xe results.

- ALICE data decreasing by 2 from the most central to the peripheral
- smoothly connect to pp and p–Pb