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Hydrodynamics — a theory with predictive power

After tuning initial conditions and viscosity at RHIC to obtain a good
description of all soft hadron data simultaneously (Song et al. 2010) the
first LHC spectra and elliptic flow measurements were successfully

predicted:

ALICE, Quark Matter 2011 (VISH2+1 prediction: Shen et al.,

~

PRC84 (2011) 044903)
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Hydrodynamics describes Pb+Pb, p+Pb and p+p at the
LHC simultaneously!

R.D. Weller, P. Romatschke, Phys. Lett. B 774 (2017) 351
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[Requires fluctuating proton substructure (gluon clouds clustered around
valence quarks (K. Welsh et al. PRC94 (2016) 024919))]

But when you look under the hood you find. ..
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Large shear stress throughout the QGP phase!
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Au+Au, b=7 fm
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VISH2+1 (from H. Song’s PhD thesis (2009))

— Large deviations from local equilibrium and momentum isotropy!
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Heavy-ion collisions provide a particular challenge:

m Relativistic viscous hydrodynamics has become the workhorse of
dynamical modeling of ultra-relativistic heavy-ion collisions

m However, the kinematics of ultra-relativistic heavy-ion collisions
introduces a complication that severely limits the applicability of
standard viscous relativistic fluid dynamics:

Large viscous stresses caused by

(1) large initial anisotropies between the longitudinal and
transverse expansion rates and by

(2) critical dynamics near the quark-hadron phase transition

m These should be treated non-perturbatively!

Earlier work (“standing on the shoulders of giants”):
Florkowski & Ryblewski, Martinez & Strickland, Bazow et al., Tinti et al., Molnar &
Niemi & Rischke, and others
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Hydrodynamics from kinetic theory

Both simultaneously valid if weakly coupled and small pressure gradients.
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Hydrodynamics from kinetic theory

Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems.
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Hydrodynamics from kinetic theory

Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems

Boltzmann Equation in Relaxation Time Approximation (RTA):

i _ _ pu(x)
POuf(x,p) = Cloxsp) = =5 (ool )~ x,))

For conformal systems 7yc1(x) = ¢/ T(x) = 5n/(ST) = 57/ T(x).
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Hydrodynamics from kinetic theory

Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems.

Boltzmann Equation in Relaxation Time Approximation (RTA):

i _ _ pu(x)
POuf(x,p) = Cloxsp) = =5 (ool )~ x,))

For conformal systems 7yc1(x) = ¢/ T(x) = 5n/(ST) = 57/ T(x).

Macroscopic currents:

j4(x) = / P E(p) = (P TH(x) = / PP F(x.p) = (P"p)

g d*p
h . L
where /p ) E,
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Hydrodynamics for strongly anisotropic expansion:

Account for large viscous flows by including their effect already at leading
order in the Chapman-Enskog expansion:
Expand the solution f(x, p) of the Boltzmann equation as

fx,p) = filx,p) +0f(x,p)  (|6F/] < 1),

B Pu2* (x)py — fi(x)
fo(x,p) = fo ( ) ) ,

where P (x)py = m* + (1+£J-(X))pi,LRF + (1+§L(X))P§,LRF

e T(x), ji(x) are the effective temperature and chemical potential in the LRF,
Landau matched to energy and particle density, e and n.

e £ | parametrize the momentum anisotropy in the LRF,
Landau matched to the transverse and longitudinal pressures, P, and P;.
(McNelis, Bazow, UH, arXiv:1803.01810)

e P, and P, encode the bulk viscous pressure, 11 = (2P +P.)/3 — Peq,

and the largest shear stress component, P,—P, .
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A variety of hydrodynamic approximations:

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

m Ideal hydro: local momentum isotropy (., = 0), N*¥ = V* = 0.

m Navier-Stokes (NS) theory: local momentum isotropy (., = 0), ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne vk,

m Israel-Stewart (IS) theory: local momentum isotropy ({1, = 0), evolves
M, V# dynamically, keeping only terms linear in Kn = /\mfp//\macro

m Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving M*", V#.

m Third-order Chapman-Enskog expansion (Jaiswal 2013): local momentum
isotropy (£1,. = 0), keeping terms up to third order when evolving M*”, V*.

m Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum
anisotropy (£.1,1 # 0), evolved according to equations obtained from low-order
moments of BE, but ignores residual dissipative flows: MN*" = V#* = 0.

m Viscous anisotropic hydrodynamics (vaHydro): improved aHydro that
additionally evolves residual dissipative flows MN*”, V* with IS or DNMR theory.
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Testing the various hydrodynamic
approximations against exact
solutions of the underlying
microscopic dynamics
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BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity (“physics on the light
cone”, no transverse flow) =— u* = (1,0, 0,0) in Milne coordinates (7, r, ®,n)
where 7 = (£*~2°)"/? and n = } In[(t—2)/(t+2)] = v. = z/t

m Metric: ds? = dr°—dr® — r’d¢? — m2dn?, guv = diag(1, -1, —r*, —72)

m Symmetry restricts possible dependence of distribution function (x, p)

(Baym '84, Florkowski et al. '13, '14):
f(x,p) = f(7;pL,w) where w = tp, — zE = 7my sinh(y—n).

m RTA BE simplifies to ordinary differential equation

_ f(T, pL, W) — eq(T; pL, W)
Trcl(T) '

O (7, prL,w) =

m Solution:

T d !/
F(:pi,w) = D(r,m)fo(p1, w) + / T

o Trel()

here D(mm) esp(~ [0
where T2, T1) = eXp| — —_— |-
T1 TYQI(T”)
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BE for systems with highly symmetric flows: Il. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where
p(r,r) = —sinh™! (1_"222#) and 0(7,r) = tan™* (quz+qz,z)-
10

P

2

\

[ qr
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BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh7! (M) and 0(r,r) = tan~? (L)

2qT 1+q2m2—q2r2
2q27'r
Tra?+2+q272
m Metric: d8§* = ds*/72 = dp®— cosh®p (d6? + sin® 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)

= v, =2z/tand v, = where q is an arbitrary scale parameter.

Symmetry restricts possible dependence of distribution function 7(x, p)
2

f(X7 p) = f(p’ ﬁgh ﬁ”l) Where f’é ﬁg + and ﬁﬂ =w.

sin? 0
= With T(7,r) = T(p(r, r))/m RTA BE simplifies to the ODE
i3 0) =~ (1 () — a (07/00))]
m Exact solution (formally similar to an analogous solution for Bjorken flow):
f(p; &, w) = D(p, po)fo(p2, w) + 1 [ dp' T (p") D(p, p') feq('; B, W)
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Hydrodynamic equations for systems with Gubser flow:

m The exact solution for f can be worked out for any “initial” condition
fo(p3, w) = f(po; 3, w). We here use equilibrium initial conditions, fy = f.q.
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Hydrodynamic equations for systems with Gubser flow:

m The exact solution for f can be worked out for any “initial” condition
fo(p3, w) = f(po; 3, w). We here use equilibrium initial conditions, fy = f.q.

m By taking hydrodynamic moments, the exact f yields the exact evolution of all
components of T"”. Here, [1*” has only one independent component, 7"".
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Hydrodynamic equations for systems with Gubser flow:

m The exact solution for f can be worked out for any “initial” condition
fo(p3, w) = f(po; 3, w). We here use equilibrium initial conditions, fy = f.q.

m By taking hydrodynamic moments, the exact f yields the exact evolution of all
components of T"”. Here, [1*” has only one independent component, 7"".

m This exact solution of the BE can be compared to solutions of the various
hydrodynamic equations in de Sitter coordinates, using identical initial conditions.

.7 _ T

m ldeal: Tideal(p) = coshz%(p)
m NS: 297 + Ztanhp = %"(p) tanhp (viscous T-evolution)

with 7 Eﬂ'n/(TS) and # 3 tanhp = 4 Trcltanhp
m IS: ‘:I:; + ;1 = tanhp — —7r 2tanhp
m DNMR: Z—’Z—i—fl = S tanhp + D7 tanhp — 27 tanhp
m 3rd-order CE: Z—’; + +i1 = s tanhp+ 27 tanhp — 27 tanh p
m aHydro: see M. Nopoush et al PRD 91 (2015) 045007
m vaHydro: Z’; ?:__’ = 2 tanhp + $7tanhp — $7° tanh p — $F(7)

(M. Martinez et aI., PRC 95 (2017) 054907)
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Exact BE vs. hydrodynamic approximations: Gubser flow

Optimal evolution of the momentum deformation parameter £7

m “Standard” viscous hydrodynamics (IS or DNMR):
expansion around local equilibrium = £ =0
m Anisotropic hydrodynamics:
expansion around a locally momentum-anisotropic state = & # 0
B P;-matching (Tinti 2015; Molnar, Niemi, Rischke, 2016):
Additional Landau matching condition that matches & evolution to
that of the longitudinal pressure Pi = no 6f corrections to Py.
In this case £ can be eliminated, and the evolution equations can be
written entirely in terms of macroscopic variables, as in standard
viscous hydrodynamics
m NSR approach (Nopoush, Strickiand, Ryblewski 2015):
obtain £ evolution equation from second moments of the BE
= P, evolution not fully captured by & evolution.
m NLO-NSR approach (vartinez, McNelis, UH 2017):
Same ¢ evolution but includes residual 6f contribution to P;
This captures the missing part of the pressure anisotropy.
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Exact BE vs. hydrodynamic approximations: Gubser flow*

Martinez, McNelis, UH, PRC95 (2017) 054907
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*For Bjorken flow see E. Molnar, H. Niemi, D. Rischke, PRC 94 (2016) 125003.
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Exact BE vs. hydrodynamic approximations: Gubser flow

Martinez, McNelis, UH, PRC95 (2017) 054907
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Exact BE vs. hydrodynamic approximations: Gubser flow

Martinez, McNelis, UH, PRC95 (2017) 054907
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Exact BE vs. hydrodynamic approximations:

Martinez, McNelis, UH, PRC95 (2017) 054907
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Shear stress evolution: Bjorken vs. Gubser

Bjorken:

Gubser:

Ulrich Heinz (OSU, CERN & EMMI)

Chattopadhyay, UH, Pal, Vujanovic, arXiv:1801.07755
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Hydrodynamic attractors: shear stress

Bjorken: 025 @ . __f,fy‘;‘;;d order sk s = 1/4n .
02 B\b( — Exact BE _- ’
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Viscous heating:

Bjorken:

Gubser:

Ulrich Heinz (OSU, CERN & EMMI)

8(p) cosh’(p)

Bjorken vs. Gubser

Chattopadhyay, UH, Pal, Vujanovic, arXiv:1801.07755
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Hydrodynamic
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—07
g 0.6
w = L(T) %05
47T17/5 04
0.3
Gubser: a
. 2tanhp 4mn § 10
W=—&"— @
T(p) s =

Ulrich Heinz (OSU, CERN & EMMI)

attractors: entropy production

Chattopadhyay, UH, Pal, Vujanovic, arXiv:1801.07755
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Summary

Viscous relativistic hydrodynamics provides a robust, reliable, efficient and
accurate description of QGP evolution in heavy-ion collisions.

It is valid even when the expansion is fast and highly anisotropic, causing large
local momentum anisotropies = local momentum isotropy and thermalization
not strictly required.

While some first-order viscous corrections are large in nuclear collisions, especially
in small systems, they can be handled efficiently in an optimized anisotropic
hydrodynamic approach that accounts for local momentum anisotropies at
leading order; residual dissipative flows remain small.

New exact solutions of the Boltzmann equation enable powerful tests of the
efficiency and accuracy of various hydrodynamic expansion schemes, providing
strong support for the validity and robustness of second-order viscous
hydrodynamics (especially their anisotropic variants).

While anisotropic hydrodynamics evolves the hydrodynamic moments of the
underlying phase-space distributions quite faithfully, it tends to overpredict
viscous heating by O(10%). Presumably worse in other hydrodynamic
approximation schemes.
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Thank you!
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