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Early stage of heavy-ion collisions

First-principles-based description is possible at sufficiently high energies.
Weak coupling g < 1 but strongly correlated A ~ Q,/g.

===) Classical-statistical field theory
» Classical-statistical simulations confirmed the “bottom-up” thermalization scenario.

» The results have been implemented into effective kinetic theory descriptions for
hydrodynamization at later stage.
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[See talk by A. Mazeliauskas]
Much progress in the pure glue sector.

[ How about quarks? ]




Quark production

» Chemical equilibrium in QGP?
» Quarks play important roles in connection with experimental observables:

* Photon and dilepton production
* Chiral Magnetic Effect

Real-time lattice simulations of quark production in the longitudinally
expanding QCD plasma

0 How intense and quick is the quark production from overoccupied gluon plasma?
0 What is the effect of the longitudinal expansion?
0 How does the quark production depend on quark mass?



Real-time lattice simulations

By systematic weak-coupling expansion around strong gauge fields, real-time evolution
equations for classical-statistical gauge fields and dynamical quantum quark fields can be
derived from the Schwinger-Keldysh path-integral formalism. Kasper et al. PRD90, 025016 (2014)

Classical Yang-Mills equation for fluctuating initial conditions
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17" (O + igAu) — m|psc =0

» The coupled equations are solved for each gauge configuration on the lattice in the
expanding geometry.

» The time evolution of quark and gluon number densities are extracted by using
Coulomb-type gauge condition.
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Time evolution of the gluon distribution
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» IR and UV cascades
» Decrease due to the longitudinal expansion and momentum broadening
» At later times, it reaches non-thermal fixed point

fg(TapJ_apz) — (QST)_z/SfS (pJ_a (QST)l/sz)

Berges et al. PRD89, 114007 (2014)



Time evolution of the quark number density

Integrated quark number density per unit transverse area and per unit rapidity
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» rapid increase at early time by nonperturbative production or initial quench
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» nearly linear increase at later times === well explained by the kinetic theory



Time evolution of the quark distribution

Earlier times
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» Occupation number of the order of one is developed at this stage.
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» Quark production is an order-one effect even in weak coupling.
gA~O(1)




Time evolution of the quark distribution

Later times
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» Occupation numbers show slight decrease due to the expansion of the system
and momentum broadening.
» The width of the longitudinal distribution is almost constant.

In the case of the free streaming (free particles in the expanding system),
the longitudinal momentum decreases as p. ~ 1/7.
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» Occupation numbers show slight decrease due to the expansion of the system

and momentum broadening.

» The width of the longitudinal distribution is almost constant.
In the case of the free streaming (free particles in the expanding system),
the longitudinal momentum decreases as p. ~ 1/7.



Time evolution of the quark distribution

Later times
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» Occupation numbers show slight decrease due to the expansion of the system

and momentum broadening.

» The width of the longitudinal distribution is almost constant.

In the case of the free streaming (free particles in the expanding system),
the longitudinal momentum decreases as p. ~ 1/7.



Comparison to a kinetic estimate

Boltzmann equation for quarks in the expanding geometry
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Consider only 2-2 scattering processes for simplicity

Small-angle approximation
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Comparison to a kinetic estimate

Substitute fy/q obtained from the lattice calculations into the kinetic formula
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» Good agreement even for the initial gluon occupancy of 10/g2 :
» The kinetic theory is normally not justified for such high density.
» The Pauli blocking is correctly described by the lattice calculations.



Transverse momentum spectrum
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» Natural mass ordering.
» Lighter quarks m/Qs < 0.1 are almost degenerated.
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mT scaling

Transverse momentum spectrum
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> For mp 2 Q. , all the spectra for different masses lie on top of each other.
> Its shape is not inconsistent with an exponential exp(—m7/Qs),
which resembles the Boltzmann distribution.




Summary

» The nonequilibrium evolution of dynamical quark fields and overoccupied
classical-statistical gauge fields has been computed by the real-time lattice
simulation technique.

» Intense and rapid quark production is obtained.
AN,
d?x, dn

For Q, ~ 1 GeV, =25 /fm* x3 flavors at A7 = 0.2 fm/c

» The transverse momentum spectra of quarks produced in the early stage
satisfy the mT scaling at high mT tails.

» The lattice results for quark production rate at later times appear to be
consistent with a simple kinetic estimate, although the kinetic theory is not
a priori justified in such a dense system.



