Analysis of the apparent nuclear modification in peripheral 5.02 TeV Pb-Pb collisions

Michael Linus Knichel (CERN)

for the ALICE Collaboration

May 15, 2018

Introduction

- «AA effects» normally associated with collectivity are also present in p-A (or even pp) collisions:
 - e.g. radial flow, anisotropic flow, correlations, ...
- several observables show a continuous trend as function of multiplicity, independent on the collision system:
 - e.g. identified particle spectra, particle ratios, ...
- it seems that (central) p-A and high multiplicity pp collisions are not so different from Pb-Pb collisions

- one distinct exception is the parton energy loss (jet quenching) which is not observed in p-Pb collisions
- quantified by the nuclear modification factor R_{AA} :

$$R_{\rm AA}(p_{\rm T}) = \frac{d^2 N^{\rm Pb-Pb}/d\eta dp_{\rm T}}{\langle N_{\rm coll} \rangle \cdot d^2 N^{\rm Pp}/d\eta dp_{\rm T}}$$

p-Pb vs. Pb-Pb

Central vs. peripheral Pb-Pb

- change in R_{AA} behavior vs. p_T : rising (central) -> flat (peripheral)
- apparent suppression in peripheral caused by biases in measurement?

=> measure R_{AA} in finer centrality bins (5%) and for all (0-100%) centralities

Geometric bias

- standard Glauber model: all individual nucleonnucleon (NN) collisions are the same
- but they differ in NN impact parameter $b_{\rm NN}$
- peripheral collisions are biased towards larger b_{NN}
- larger $b_{NN} =>$ lower number of hard scatterings (MPIs)
- bias independent of centrality estimator (even for impact parameter slicing)

- Effect estimated in absence of nuclear effects with HIJING-Glauber-PYTHIA (HG-PYTHIA):
 - incoherent superposition of PYTHIA pp collisions with each #MPI from HIJING-Glauber
 - Glauber model with HIJING b_{NN} dependence yields #MPI for each NN collision

(A. Morsch, C. Loizides, Phs. Lett. B773 (2017) 408-411)

Multiplicity selection bias

- experimentally, we select centrality not by collision geometry, but by slicing in multiplicity in some detector (VZERO)
- this way when selecting peripheral collisions
 => selecting events with lower multiplicity per N_{part}
- bias on the number of hard scatterings (MPIs)

- can not be separated experimentally from geometry bias
- estimate in HG-PYTHIA (in addition to the geometry bias):
- becomes relevant already for mid-central collisions
- huge effect in the most peripheral bins

=> look in data for the effect in peripheral collisions

6 🋞

The ALICE detector

Michael Linus Knichel

7 🛞

Selecting "peripheral" Pb-Pb collisions

Tranverse momentum spectra

- **Primary charged particles**
- 5% wide centrality bins
- covers 0-100%
- 0.15 < *p*_T < 30 GeV/c
- most peripheral bin: $p_T < 20 \text{ GeV}/c$

N_{coll} determination

- Normalization of R_{AA} based on N_{coll}
- *N*_{coll} values can be determined from impact parameter slicing (*N*_{coll}^{geo}) or from slicing in the Glauber-NBD fit (*N*_{coll}^{mult})
- Slicing in impact parameter leads to an overestimate of N_{coll} => bias on R_{AA}

ALICE Collaboration, arXiv:1805.05212 < N^{mult} >/ < N^{geo} > 60 0.8 0.7 0.6 ALICE, Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Glauber NBD fit to V0M data 0.5 20 40 60 80 100 0 Centrality (%)

• We used average N_{coll}^{mult} extracted from NBD-Glauber fit sliced in multiplicity to avoid the bias from N_{coll}^{geo}

Nuclear modification factor

ALICE Collaboration, arXiv:1805.05212

- From central to ~80% peripheral collisions:
 - *R*_{AA} increases at large *p*_T
 => reduced parton energy loss

decreased radial flow

- shows dramatic change for centralities > 80%
- decrease of R_{AA}, sign change of slope at high and low p_T

R_{AA} at large p_T

- R_{AA} averaged over 8 < p_T < 20 GeV/c as function of centrality
- central collisions: strong quenching, reduced towards peripheral collisions
- minimal suppression (maximal *R*_{AA}) around 80%
- beyond 80% centrality: increased suppression because of selection bias

- *R*_{AA} never reaches unity
- HG-PYTHIA contains no nuclear effects
- \Rightarrow no need for jet quenching above 75% centrality
- \Rightarrow 5-10% effect for 50-60% central

Slope of R_{AA} at low and high pT

fit a linear function to R_{AA} at low p_T (0.5-2 GeV/c) and high p_T (8-20 GeV/c)

- slope not affected by any normalization uncertainty
- the rise of R_{AA} gets stronger up to 40%
- slope at high p_T is consistent with zero for >80% central

- the slope at low and high p_T is different by a factor ~15
- origin of the rise is very different at low and high p_T
- but the centrality dependence is strikingly similar

=> correlation between radial flow (low p_T) and energy loss (high p_T)?

ALICE Collaboration, arXiv:1805.05212 ۳ ± 010-15% 25-30% × 5-10% 15-20% 20-25% ▲ 45-50% × 30-35% △ 35-40% ▽ 40-45% ▼ 50-55% • 75-80% • 55-60% 60-65% • 65-70% * 70-75% + 80-85% * 85-90% 90-95% • 95-100% 0.8 0.6 0.4 0.2 ALICE, Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ charged particles, $|\eta| < 0.8$ 10^{-1} 10 $p_{_{\rm T}}$ (GeV/c)

- *R*_{AA} suffers from large systematic uncertainties on normalization
- => ratios of adjacent centrality bins to cancel part of systematic uncertainties
- R_{+1} expected to be >1

Example:
$$R_{+1}(75-80\%) = \frac{R_{AA}(75-80\%)}{R_{AA}(70-75\%)}$$

- only mildly *p*_T dependent
- *R*₊₁ very similar over a wide centrality range (0-75%)
- significant change for peripheral beyond 75% centrality

 R_{+1}

Centrality evolution of R_{+1}

- R_{+1} averaged over 8 < p_T < 20 GeV/*c* as function of centrality
- flat up to 60%, increasingly steep decline thereafter
- slope of linear fit to R₊₁ at low p_T (mild centrality depence with strong drop above 80%) and high p_T (no significant centrality dependence)

Scaled R_{AA}

ALICE Collaboration, arXiv:1805.05212

- *R*_{AA} scaled by the high *p*_T bias from HG-PYTHIA
- strong suppression (jet quenching) visible up to 75% centrality
- scaled *R*_{AA} ~ 1 for 75-90%
- drop below unity for even more peripheral
- could be caused by diffraction which is included in the data but not in HG-PYTHIA

Summary

- measurement of charged particle spectra and R_{AA} in fine centrality bins extending to most peripheral (0-100%)
- N_{coll} from a multiplicity selected Glauber-NBD fit
- slope of R_{AA} at low and high p_T remarkably similar
- R_{AA} and R_{+1} at large p_T drop strongly in peripheral collisions (>80%)
- trend consistent with a simple PYTHIA-based model with no nuclear modification and no soft component in particle production

- \Rightarrow apparent suppression of particle production in peripheral collisions can be caused by biases
- \Rightarrow peripheral collisions as baseline (R_{CP}) also affected
- \Rightarrow explains why R_{AA} is below 1 in peripheral Pb-Pb collisions, but equal to 1 in p-Pb collision at the same charged particle multiplicity
- \Rightarrow there is no need for jet quenching in peripheral heavy ion collisions

