

Contribution ID: 568 Type: Parallel Talk

PHENIX results on jet modification with π^0 - and photon-triggered two particle correlations in p+p, p(d)+Au, and Au(Cu)+Au collisions

Wednesday 16 May 2018 09:00 (20 minutes)

As a colorless probe, direct photons balance the p_T of the away-side jet at leading order. Direct photon-hadron correlations are thus an excellent probe for nuclear structure and QCD effects, including parton energy loss in the Ouark-Gluon Plasma.

PHENIX has measured π^0 and direct photon-triggered two-particle azimuthal correlations in a variety of collision systems ranging from p+p to Au+Au at 200 GeV. In p+Au and d+Au collisions, no modification of the per-trigger jet yield or away-side correlation width compared to p+p collisions is observed for direct photon triggered correlations while an increase in the away-side width for

 π^0 triggered correlations in p+Au has been measured. In Au+Au and Cu+Au collisions, direct photons have been identified statistically as well as using an isolation cut. Combining data sets from different collision systems allows us to quantify the transition from suppression at high

 z_T $(p_{T,h}/p_{T,gamma})$ to the enhancement of low z_T particles relative to p+p, and to study this transition as a function of trigger p_T . The implication for our understanding of cold and hot nuclear matter from these measurements will be discussed.

Content type

Experiment

Collaboration

PHENIX

Centralised submission by Collaboration

Presenter name already specified

Primary author: DAVID, Gabor (Brookhaven National Laboratory)

Presenter: OSBORN, Joseph (University of Michigan)

Session Classification: Jet modifications and high-pT hadrons

Track Classification: Jet modifications and high-pT hadrons