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Map of	Splittings	in	Medium

vLund	diagrams	represent	phase	space	of	splittings	
using	momentum	fraction	and	opening	angle	

v Allow	to	differentiate	regions	where	different	
medium	induced	signal	can	dominate

vRelevant	medium	scales	shown	on	axes
Tywoniuk et	al.	5th	Heavy	Ion	Jet	Workshop/CERN	TH	institute
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Cambridge-Aachen Reclustering

ALI-SIMUL-155734

Iterative Declustering
vIterative	declustering unwinds	jet	clustering	and	stores	
splitting	information

vIn	vacuum	Cambridge-Aachen	declustering populates	Lund	
diagram	with	a	density	proportional	to	𝛼- [1]

vImposing	different	grooming	conditions	can	isolate	regions	of	
phase	space	where	medium-induced	signal	is	expected

z > zcut✓
�

Soft	Drop[2]	/mMDT Grooming[3]

[1]	G.	Salam	gitlab.cern.ch/gsalam/2017-lund-from-MC
[2]	M.	Dasgupta et	al.	JHEP	1309	(2013)	029
[3]	A.	Larkoski	et	al.	JHEP	1405	(2014)	146
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Variable	Definitions
v This	talk	will	discuss	the	analysis	of	jet	grooming	using	Soft	Drop

v The	algorithm	is	used	to	identify	hard	splittings	in	jet	evolution	and	parametrise	them	using	
3	observables,	the	symmetry	parameter	(zg),	angular	separation	(Rg)	and	multiplicity	(nSD)	

v Note:	zg and	Rg both	measure	the	first	splitting	identified	by	grooming	while nSD counts	the	
number	of	splittings	that	pass	grooming	conditions	in	jet	by	declustering iteratively

𝑅g

𝑝#,% = 1 − 𝑧0 	𝑝#
𝑚%
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pp	Analysis

v MB	collisions	at	 𝑠� = 7	TeV

v No	subtraction

v Particle	level	corrected																							
measurement	pT range	40-60	GeV/c

Pb-Pb Analysis

v Central	collisions	at	 𝑠::� = 2.76	TeV	

v Constituent	subtraction

v Detector	level	measurement																																											
pT range	80-120	GeV/c

v Compared	to	smeared	reference

Analysis Details
Common	Analysis	Details

v Charged	jets	(TPC+ITS	tracks)	pT,cutoffconst =	0.15	GeV/c

v Anti-kT clustered	jets,	R =	0.4,	E-scheme	recombination
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ALI-PREL-147982

pp Substructure	Results

vJets	satisfying	z >	zcut =	0.1:
1. Data	97.3(0.5)%
2. PYTHIA	98.9(0.1)%

vGood	agreement	observed	between	data	and	PYTHIA	Perugia	2011

ALI-PREL-147986 ALI-PREL-147990
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v Grooming	behaves	differently	in	the	presence	
of	underlying	event	compared	to	vacuum

v Algorithm	used	for	declustering reflects	the	
ordering	of	the	clustering	strategy

v Can	be	changed	to	increase	sensitivity	to	a	
given	process

v For	example	kTmay	be	optimal	for	searching	for	
an	induced	semi-hard	splittings

Grooming in	Heavy	Ion	Collisions
Groomed	Branches Groomed	Momentum	Fraction
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v Grooming	behaves	differently	in	the	presence	
of	underlying	event	compared	to	vacuum

v Algorithm	used	for	declustering reflects	the	
ordering	of	the	clustering	strategy

v Can	be	changed	to	increase	sensitivity	to	a	
given	process

v For	example	kTmay	be	optimal	for	searching	for	
an	induced	semi-hard	splittings

Grooming in	Heavy	Ion	Collisions
Symmetry	Parameter Groomed	Radius
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Splittings	map	for	difference	of	embedded	and	true	PYTHIA

vCompare	Lund	diagrams	of	two	populations:
1. PYTHIA	jets	in	vacuum
2. PYTHIA	jets	embedded	into	central	PbPb

vObserve	a	clear	enhancement	of	splittings	at	large	angular	separation:	
purely	a	background	effect,	not	physical

Background	Response and	Fake Subjets
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Background	Response and	Fake Subjets

vUncorrelated	background	can	promote	subleading subjets	above	the	threshold	

vDominant	at	low	zg and large	Rg

vEffects	fully	accounted	for	using	PYTHIA	embedded	jets	as	smeared	reference
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vUncorrelated	background	can	promote	subleading subjets	above	the	threshold	

vDominant	at	low	zg and large	Rg

vEffects	fully	accounted	for	using	PYTHIA	embedded	jets	as	smeared	reference
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vUncorrelated	background	can	promote	subleading subjets	above	the	threshold	

vDominant	at	low	zg and large	Rg

vEffects	fully	accounted	for	using	PYTHIA	embedded	jets	as	smeared	reference
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vUncorrelated	background	can	promote	subleading subjets	above	the	threshold	

vDominant	at	low	zg and large	Rg

vEffects	fully	accounted	for	using	PYTHIA	jets	embedded	in	real	events	as	smeared	reference
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ALI-PREL-148225ALI-PREL-148221

vzg distribution	for	inclusive	jet	sample	in	Pb-Pb collisions	in	jet	pT range	80-120	GeV/c	
normalising	to	the	total	number	of	jets	in	the	reconstructed	pTjet bin	

vNo	net	enhancement	of	splittings	passing	Soft	Drop	cuts	observed	at	large	angles

vCutting	on	angular	separation	as	in	other	analysis[1]	leads	to	a	stronger	modification	of	zg
distribution	driven	by	an	increase	of	fraction	unselected	jets	in	data

No	angular	cutoff ∆𝑹 > 𝟎. 𝟏
Inclusive	Results:	Pb-Pb
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[1] A. M.	Sirunyan et	al.
Phys.	Rev.	Lett. 120,	142302

Unselected	=	Untagged	(SD)	+	cut	by	∆𝑅 cut	
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vzg distribution	for	inclusive	jet	sample	in	Pb-Pb collisions	in	jet	pT range	80-120	GeV/c	
normalising	to	the	total	number	of	jets	in	the	reconstructed	pTjet bin	

vNo	net	enhancement	of	splittings	passing	Soft	Drop	cuts	observed	at	large	angles

vCutting	on	angular	separation	as	in	other	analysis[1]	leads	to	a	stronger	modification	of	zg
distribution	driven	by	an	increase	of	fraction	unselected	jets	in	data

No	angular	cutoff ∆𝑹 > 𝟎. 𝟏
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[1] A. M.	Sirunyan et	al.
Phys.	Rev.	Lett. 120,	142302

Inclusive	Results:	Pb-Pb Unselected	=	Untagged	(SD)	+	cut	by	∆𝑅 cut	



ALI-PREL-148225ALI-PREL-148221

vzg distribution	for	inclusive	jet	sample	in	Pb-Pb collisions	in	jet	pT range	80-120	GeV/c	
normalising	to	the	total	number	of	jets	in	the	reconstructed	pTjet bin	

vNo	net	enhancement	of	splittings	passing	Soft	Drop	cuts	observed	at	large	angles

vCutting	on	angular	separation	as	in	other	analysis[1]	leads	to	a	stronger	modification	of	zg
distribution	driven	by	an	increase	of	fraction	unselected	jets	in	data

No	angular	cutoff ∆𝑹 > 𝟎. 𝟏

[1] A. M.	Sirunyan et	al.
Phys.	Rev.	Lett. 120,	142302
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Inclusive	Results:	Pb-Pb Unselected	=	Untagged	(SD)	+	cut	by	∆𝑅 cut	



ALI-PREL-148229ALI-PREL-148233

∆𝑹 < 𝟎. 𝟏 ∆𝑹 > 𝟎. 𝟐
Angular Dependence

vConsidering	the	extreme	angular	limits	of	collimated	(left)	and	large	angle	(right)	splittings

vOverall enhancement	of	collimated	splittings	and	suppression	of	large	angle	splittings

vIn	large	angle	limit	observe	no	evidence	of	low	zg splittings
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Unselected	=	Untagged	(SD)	+	cut	by	∆𝑅 cut	



ALI-PREL-148229ALI-PREL-148233

vConsidering	the	extreme	angular	limits	of	collimated	(left)	and	large	angle	(right)	splittings

vOverall enhancement	of	collimated	splittings	and	suppression	of	large	angle	splittings

vIn	large	angle	limit	observe	no	evidence	of	low	zg splittings

∆𝑹 < 𝟎. 𝟏 ∆𝑹 > 𝟎. 𝟐
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Angular Dependence Unselected	=	Untagged	(SD)	+	cut	by	∆𝑅 cut	



ALI-PREL-148229ALI-PREL-148233

vConsidering	the	extreme	angular	limits	of	collimated	(left)	and	large	angle	(right)	splittings

vOverall enhancement	of	collimated	splittings	and	suppression	of	large	angle	splittings

vIn	large	angle	limit	observe	no	evidence	for	excess	of	low	zg splittings

∆𝑹 < 𝟎. 𝟏 ∆𝑹 > 𝟎. 𝟐
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Angular Dependence Unselected	=	Untagged	(SD)	+	cut	by	∆𝑅 cut	
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Splittings	map	for	difference	of	data	and	embedded	PYTHIA

Suppression
Enhancement

vLund	diagram	for	the	difference	in	the	first	hard	splitting	
identified	in	Pb-Pb jets	and	embedded	PYTHIA	jets	

vA suppression	of	large	angle	splittings	and	enhancement	
of	collinear	splittings	is	observed	– consistent	with	
observation	in	zg measurement

Recursive Splittings
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ALI-PREL-155677

vNo	enhancement	in	the	number	of	splittings	passing	Soft	Drop	in	medium

vRather:	enhancement	in	number	of	untagged	jets;	trend	to	lower	nSD

v Contrast	to	expectations	from	correlated	medium	response	or	coherent	
collinear	emissions

Recursive Splittings
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ALI-PREL-155677

Recursive Splittings
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vNo	enhancement	in	the	number	of	splittings	passing	Soft	Drop	in	medium

vRather:	enhancement	in	number	of	untagged	jets;	trend	to	lower	nSD

v Contrast	to	expectations	from	correlated	medium	response	or	coherent	
collinear	emissions
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vMedium	recoil	promotes	soft	
branches	above	threshold	

vExpect	to	observe	additional	splittings	
in	jet	declustering to	pass	Soft	Drop	–
not observed	in	nSD measurement

Medium	Recoil

Coherent	Collinear	Emission

G.	Milhano	et	al.
Phys.Lett.	B779	(2018)	409-413

Y.	Mehtar	Tani,	K.	Tywoniuk
JHEP	1704	(2017)	125

vCoherent	hard,	rare,	BDMPS	emissions	
expected	to	occur	at	narrow	angles

vInduced	splittings	increase	probability	
of	low	zg splittings	

Some Considerations
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vResults	of	grooming	using	Soft	Drop	zcut =	0.1,	𝛽 =	0	have	been	presented

vObserve	significant	modification	of	zg distribution	in	Pb-Pb collisions

vLarge	angle	splittings	suppressed	in	data	

vNo	enhancement	of	number	of	hard	splittings	in	Pb-Pb collisions	

vUse	pp	data	as	reference	with	measurements	at	 𝑠::� = 5.02 TeV

vWith	increased	statistics	can	explore	the	Lund	map	of	splittings	in	more	detail

Summary +	Outlook
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vSystematic	uncertainties	include:
vTracking	efficiency	uncertainty	
vUnfolding:

vRegularisation	(modifying	chosen	iteration	+/- 1)
vTruncation	(varying	input	jet	pT cut	off	by	10	GeV	and	shape	bins	to	exclude	
untagged	jets)
vPrior	(reweighting	prior	of	unfolding	by	ratio	of	chosen	unfolded	solution	
and	truth	distribution)
vBinning	(modification	of	input	binning	used	in	unfolding)

Systematics:	pp
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