Measurement of Jets in PbPb Collisions with CMS

Christopher McGinn

Massachusetts Institute of Technology On Behalf of the CMS Collaboration Quark Matter 2018 in Venezia, Italy 2018.05.16

Latest Jet Results in PbPb w/ CMS

- Jets in heavy-ions require underlying-event (UE) subtractions
- In boson+jets results, CMS employs iterative pedestal (PU) subtraction
- Zero-suppression algorithm, destroys constituent resolution
- All measurements employ $R=0.3$ to minimize impact of UE

Latest Jet Results in PbPb w/ CMS

- In substructure results, CMS employs constituent subtraction (CS)
- Preserves resolution of constituents (particle-like)
- All measurements employ $R=0.4$
- No CMS measurement in PbPb currently goes beyond $\mathrm{R}=0.5$

Scanning Jet Radius to Study Quenching

- Experimental Results: Measured jet production in R-scans
- Some effect at low- p_{T}, converges at high- p_{T}
- Restricted to low-pt by sample size
- Limited systematically by pp reference being taken during different data-taking periods
- Limited in R by underlying-event (UE) at low-рт

Scanning Jet Radius to Study Quenching

- THEORY

- More ambitious than experiments
- Scanning $\mathrm{R}=0.2$ thru $\mathrm{R}=1.0$
- Magnitude of R dependence varies with model
- Sensitive to:
- Angular redistribution of energy
- Medium Response

Highlighting One Prediction (JEWEL)

JEWEL+PYTHIA $\mathrm{Pb}+\mathrm{Pb}(0-5 \%)(2.76 \mathrm{TeV})$

Roughly 25\% difference between $R=0.4$ and $R=0.8$ (Standard CMS cones)

- Roughly flat, persistent suppression at high-pт
- Increasing with increasing jet cone radius
- Changes if energy lost to medium is removed from event
- A ratio of RAA will be sensitive with reduced systematics

Viability of Large Cone in Heavy-Ions

Fluctuations in ρ contribute to jet resolution as N term:

$$
\sigma\left(\frac{p_{T}^{R E C O}}{p_{T}^{G E N}}\right)=\sqrt{C^{2}+\frac{S^{2}}{p_{T}^{G E N}}+\frac{N^{2}}{\left(p_{T}^{G E N}\right)^{2}}}
$$

Typically HI chooses small cone

- Limits UE contribution
- (GeV/Area)
- Alternatively, scale away UE by рт
- $N / p_{\text {t }}$ in quadratic sum
- Possible with size of 2015 PbPb and pp samples
- pp: $27.4 \mathrm{pb}^{-1}$ at 5.02 TeV

CMS Preliminary
Counts

- PbPb: $404 \mu \mathrm{~b}^{-1}$ at 5.02 TeV

Constituent Subtraction

SIGNAL: Hard-scattering in PbPb collision producing jets UNDERLYING EVENT: Uncorrelated particles from other nucleon-nucleon interactions

Constituent Subtraction

GHOST PARTICLES: Artificial particles added to the event on an $\eta-\varphi$ grid. Ghosts are given a $р_{т}$ according to ρ times the area the inhabit, A_{g}

Constituent Subtraction

- Add "ghost" particles on $\eta-\varphi$ grid according to: $p_{\mathrm{T}}^{g}=A_{g} \cdot \rho$,

$$
m_{\delta}^{g}=A_{g} \cdot \rho_{m} .
$$

UNDERLYING EVENT
GHOST PARTICLES

Constituent Subtraction

- Combine iteratively with real particles by minimizing metric:

$$
\Delta R_{i, k}=p_{T i}^{\alpha} \cdot \sqrt{\left(y_{i}-y_{k}^{g}\right)^{2}+\left(\phi_{i}-\phi_{k}^{g}\right)^{2}} .
$$

UNDERLYING EVENT

GHOST PARTICLES

Constituent Subtraction

- Cluster remaining event into jets

Estimating Flow Event-by-Event

CMS Preliminary $2015 \mathrm{PbPb} \sqrt{\mathrm{S}_{\mathrm{NN}}}=5.02 \mathrm{TeV}$

CMS Preliminary $2015 \mathrm{PbPb} \sqrt{\mathrm{S}_{\mathrm{NN}}}=5.02 \mathrm{TeV}$

Following Example Of:
Phys.Lett. B 753 (2016)
511-525

- Extract an event-by-event v_{2} and v_{3} by fitting particle flow candidates
- Charged Hadron candidates, $0.3<\mathrm{p}_{\mathrm{T}}<3$ and $|\eta|<1$
- Fit is employed over all η to model flow
- Extracted $\mathrm{v}_{2}\left(\mathrm{v}_{3}\right)$ are used to modulate $\mathrm{CS} \rho$ to add ghost particles

Incremental Improvements in CS at CMS

CMS Preliminary $2015 \mathrm{PbPb} 0-5 \%, \sqrt{\mathrm{~s}_{\mathrm{NN}}}=5.02 \mathrm{TeV}$

η

CS as employed in:
PRL 120 (2018) 142302 and:
Jet Mass (ARXIV NOW)
Using unsubtracted $\mathbf{k}_{\mathbf{t}}$ clustered jets to extract ρ
$\langle\rho\rangle\left[\frac{\mathrm{GeV}}{\text { Area }}\right]$

- Unwrapped detector in coordinates $\boldsymbol{\eta}-\left(\boldsymbol{\varphi}-\boldsymbol{\Psi}_{\mathrm{Hf}, 2}\right)$
- Average subtracted constituent sum
- $\boldsymbol{\varphi}-\boldsymbol{\Psi}_{\mathrm{HF}, 2}$ is azimuth relative the event plane
- Features:
- Strong modulation in $\boldsymbol{\varphi}$ w.r.t $\Psi_{\text {HF, } 2}$
- Mid-rapidity ρ inconsistent with forward
- Hence $|\eta|$ restriction of measurements

Incremental Improvements in CS at CMS

CMS Preliminary
$2015 \mathrm{PbPb} 0-5 \%, \sqrt{\mathrm{~s}_{\mathrm{NN}}}=5.02 \mathrm{TeV}$
$\langle\rho\rangle\left[\frac{\mathrm{GeV}}{\text { Area }}\right]$

CS as employed in:
PRL 120 (2018) 142302
and:
ARXIV
Using unsubtracted k_{t} clustered jets to extract ρ

Comparing in and out-plane ρ, there remains significant modulation in φ relative $\boldsymbol{\Psi}_{\mathrm{Hf}, 2}$

Reduces the forward ρ

 post-subtraction to levels consistent with mid- η
Incremental Improvements in CS at CMS

CMS Preliminary
$2015 \mathrm{PbPb} 0-5 \%, \sqrt{\mathrm{~S}_{\mathrm{NN}}}=5.02 \mathrm{TeV}$
$\langle\rho\rangle\left[\frac{G e V}{\text { Area }}\right]$
 post-subtraction to levels consistent with mid- η
CS as employed in:
PRL 120 (2018) 142302
and:
ARXIV
Using unsubtracted k_{t} clustered jets to extract ρ

Projection of Detector on Azimuth

CMS Preliminary
$2015 \mathrm{PbPb} 0-5 \%, \sqrt{\mathrm{~s}_{\mathrm{NN}}}=5.02 \mathrm{TeV}$

- CS Updated w/ Flow correction shows reduced modulations when projected onto azimuth compared to previous iterations
- Reduction in jet energy scale dependence on event plane

Jet Energy Scale at R=0.4 and R=0.8

- Scale closure of $\mathrm{R}=0.4$ (Left) and $\mathrm{R}=0.8$ (Right) jets over all centrality
- In large cone, oversubtract at lower p_{T} in peripheral events
- Identical corrections applied to all centrality
- Derived from unsubtracted jets in PYTHIA events

Jet Energy Resolution at $\mathrm{R}=0.4$ and $\mathrm{R}=0.8$

- Energy resolution of $\mathrm{R}=0.4$ (Left) and $\mathrm{R}=0.8$ (Right) jets over all centrality
- In large cone, UE drives high resolution at low-pT
- JER ~18\% at $200 \mathrm{GeV}(\mathrm{R}=0.8)$

Scale Closure vs. Event Plane (R=0.8)

CMS Preliminary Simulation

CMS Preliminary Simulation

- Jet energy scale closure as function of event plane for $\mathrm{R}=0.8 \mathrm{w} / \mathrm{o}$ flow correction (Left) and with flow correction (Right)
- Significant flattening of scale translates directly to resolution reduction
- Compare to $\mathrm{R}=0.4$ (backup)

Conclusions

- An alternative view of how to handle UE subtraction in jets is presented
- Instead of exploring tight cone R at low- p_{T}, consider large R at high- p_{T}
- Jet reconstruction is updated for forward $-\eta$ and to account for flow modulations
- Perform Jet Nuclear Modification Factor Radius Scan up to R=1 for $p_{T}>200$
- Extend CMS jet substructure measurements to large cone size

Backup

The CMS Detector and Particle Flow

```
JINST 12
    (2017)
    P10003
```


- CMS combines all subdetectors via the particle-flow algorithm
- Particle-flow objects serve as jet constituents

Jet Reconstruction with CMS in pp

- Particle-flow constituents combine tracks, ECal and HCal
- Strong improvement at low- $\boldsymbol{p}_{\mathbf{T}}$ with addition of tracks

Iterative Pedestal Subtraction

- ρ or $\left\langle\mathrm{E}_{\mathrm{T}}\right\rangle$ is calculated in strips of rapidity
- Follows HCal tower geometry
- A second iteration is run excluding "jetty" regions of the detector from each η-strip extraction
- UE estimation that naturally follows a changing detector geometry

1. $\left\langle E_{T}\right\rangle$ calculated in strips of η. Subtract $\left\langle\mathrm{E}_{\mathrm{T}}\right\rangle+\sigma$

2. Exclude reconstructed jets and re-estimate background

3. Run anti- k_{T} algorithm on background-subtracted tower

4. Re-run anti- k_{T} algorithm to get final jets

Scale Closure vs. Event Plane (R=0.4)

- Jet energy scale closure as function of event plane for $\mathrm{R}=0.4 \mathrm{w} / \mathrm{o}$ flow correction (Left) and with flow correction (Right)
- Some flattening of scale less than corresponding $\mathrm{R}=0.8$ case

