Measurement of Jets in PbPb Collisions with CMS

Christopher McGinn Massachusetts Institute of Technology On Behalf of the CMS Collaboration Quark Matter 2018 in Venezia, Italy 2018.05.16

Latest Jet Results in PbPb w/ CMS

- Zero-suppression algorithm, destroys constituent resolution
- All measurements employ R = 0.3 to minimize impact of UE

Christopher McGinn

Latest Jet Results in PbPb w/ CMS

- In substructure results, CMS employs constituent subtraction (CS)
 - Preserves resolution of constituents (particle-like)
- All measurements employ R = 0.4
- No CMS measurement in PbPb currently goes beyond R = 0.5

Scanning Jet Radius to Study Quenching

- Experimental Results: Measured jet production in R-scans
- Some effect at low-p_T, converges at high-p_T
- Restricted to low-p_T by sample size
- Limited systematically by pp reference being taken during different data-taking periods
- Limited in R by underlying-event (UE) at low-p_T

Christopher McGinn

Scanning Jet Radius to Study Quenching

Highlighting One Prediction (JEWEL)

- Roughly flat, persistent suppression at high-p_T
 - Increasing with increasing jet cone radius
 - Changes if energy lost to medium is removed from event
 - A ratio of RAA will be sensitive with reduced systematics

Viability of Large Cone in Heavy-lons

8

Christopher McGinn

9

ullet

•

Estimating Flow Event-by-Event

- Extract an event-by-event v_2 and v_3 by fitting particle flow candidates
 - Charged Hadron candidates, $0.3 < p_T < 3$ and $|\eta| < 1$
 - Fit is employed over all η to model flow
- Extracted $v_2(v_3)$ are used to modulate CS ρ to add ghost particles

Incremental Improvements in CS at CMS

- Unwrapped detector in coordinates $\eta (\varphi \Psi_{HF,2})$
 - Average subtracted constituent sum
 - ϕ - Ψ _{HF,2} is azimuth relative the event plane
- Features:
 - Strong modulation in ϕ w.r.t $\Psi_{HF,2}$
 - Mid-rapidity p inconsistent with forward
 - Hence $|\eta|$ restriction of measurements

Incremental Improvements in CS at CMS

Incremental Improvements in CS at CMS

Projection of Detector on Azimuth

- CS Updated w/ Flow correction shows reduced modulations when projected onto azimuth compared to previous iterations
 - Reduction in jet energy scale dependence on event plane

Jet Energy Scale at R=0.4 and R=0.8

- Scale closure of R=0.4 (Left) and R=0.8 (Right) jets over all centrality
- In large cone, oversubtract at lower p_T in peripheral events
- Identical corrections applied to all centrality
 - Derived from unsubtracted jets in PYTHIA events

Jet Energy Resolution at R=0.4 and R=0.8

- Energy resolution of R=0.4 (Left) and R=0.8 (Right) jets over all centrality
- In large cone, UE drives high resolution at low-p_T
 - JER ~18% at 200 GeV (R=0.8)

23

Scale Closure vs. Event Plane (R=0.8)

- Jet energy scale closure as function of event plane for R=0.8 w/o flow correction (Left) and with flow correction (Right)
- Significant flattening of scale translates directly to resolution reduction
 - Compare to R=0.4 (<u>backup</u>)

Conclusions

CMS Preliminary Simulation

- An alternative view of how to handle UE subtraction in jets is presented
 - Instead of exploring tight cone R at low- p_T , consider large R at high- p_T
- Jet reconstruction is updated for forward- η and to account for flow modulations
 - Perform Jet Nuclear Modification Factor Radius Scan up to R=1 for $p_T > 200$

25

• Extend CMS jet substructure measurements to large cone size

The MIT group's work was supported by US DOE-NP

Christopher McGinn

The CMS Detector and Particle Flow

- CMS combines all subdetectors via the particle-flow algorithm
- Particle-flow objects serve as jet constituents

(2017)

P10003

Jet Reconstruction with CMS in pp

Particle-flow constituents combine tracks, ECal and HCal
 Strong improvement at low-p_T with addition of tracks

Data n: MC

Iterative Pedestal Subtraction

- ρ or <E_T> is calculated in strips of rapidity
 - Follows HCal tower
 geometry
- A second iteration is run excluding "jetty" regions of the detector from each η-strip extraction
- **UE** estimation that naturally follows a changing detector geometry

3. Exclude reconstructed jets and re-estimate background

2. Run anti-k_T algorithm on background-subtracted towers

Christopher McGinn

Scale Closure vs. Event Plane (R=0.4)

 Jet energy scale closure as function of event plane for R=0.4 w/o flow correction (Left) and with flow correction (Right)

Fig. From:

CMS-DP-2018

• Some flattening of scale less than corresponding R=0.8 case

Christopher McGinn

