A simultaneous description of jet suppression and hadron suppression

Daniel Pablos

in collaboration with J. Casalderrey, Z. Hulcher, G. Milhano & K. Rajagopal

McGill

WAYNE STATE

Quark Matter 2018

Venezia

15th May 2018
Motivation

How to understand high momentum behaviour?

Different asymptotic trend for jets than for hadrons?

What can we learn from a simultaneous fit to jet and hadron data?

Precise data available up to very high momentum

ATLAS Preliminary
anti-κ, $R = 0.4$ jets

ATLAS, $\sqrt{s_{NN}} = 5.02$ TeV, this analysis
ATLAS, $\sqrt{s_{NN}} = 2.76$ TeV, arXiv: 1411.2357

2015 Pb+Pb data, 0.49 nb$^{-1}$
2015 pp data, 25 pb$^{-1}$
Jet FFs count the number of hadrons, per jet, with an energy fraction \(z \)

Soft particle enhancement w.r.t. pp jets

Medium back-reaction to deposited energy & momentum
Antenna decoherence breaks angular ordering

Jet Fragmentation Functions (FFs)

see C. Park’s talk on Wednesday

see E. Iancu’s talk on Wednesday

Daniel Pablos
Jet Fragmentation Functions (FFs)

Jet FFs count the number of hadrons, per jet, with an energy fraction z

Hard particle enhancement w.r.t. pp jets

Steeply falling jet spectrum → High p_T hadron spectrum dominated by leading tracks (from hard fragmenting jets)
Jet Fragmentation Functions (FFs)

Jet FFs count the number of hadrons, per jet, with an energy fraction z

Hard particle enhancement w.r.t. pp jets

High z region of jet FFs closely related to hadronic spectrum
How do jet FFs affect the hadron spectrum?

Hybrid Model

Jet FFs and hadrons

Daniel Pablos

McGill / JETSCAPE

In preparation
Jets, their FFs, and hadrons

In preparation

Hybrid Model

Graph:
- **Y-axis:** R_{AA}
- **X-axis:** Hadron or Jet p_T [GeV]
- **Legend:**
 - Hadrons
 - Jets $R = 0.4$
 - Jets $\otimes FF^{actual}$

Inset:
- **Label:** Actual jet FFs
- **Graph:**
 - **Y-axis:** $\ln(1/z)$
 - **X-axis:** 0.5 to 4
 - Plot of jet FFs for high z enhancement

Data Points:
- **Hadrons:**
 - R_{AA} values for different p_T values.
- **Jets $R = 0.4$:**
 - R_{AA} values for different p_T values.
- **Jets $\otimes FF^{actual}$:**
 - R_{AA} values for different p_T values.

Notes:
- **High z enhancement:**
 - Indicated in the inset graph.
- **PbPb jet FFs:**
 - Highlighted in the main graph.

In Preparation:
- Daniel Pablos
- McGill / JETSCAPE
Jets, their FFs, and hadrons

In preparation

Hybrid Model

Daniel Pablos
High z enhancement
Flat FFs ratio
High z suppression

Inverted jet FFs
Vacuum jet FFs
PbPb jet FFs

Hybrid Model

Hadrons
Jets $R = 0.4$

In preparation
Jet narrowing: a selection bias

Wider, more active jets lose more energy than narrower, hard fragmenting ones

Steeply falling jet spectrum -> bias inclusive jet sample to narrower ones, explains high z enhancement

High p_T hadrons belong to such subsample of narrow jets, which get less quenched, and so $R_{AA}^{had} > R_{AA}^{jet}$

(Effect seen in the literature, for different models, on different observables - see backup)
The hybrid strong/weak coupling model

Basis: exploit scale separation

High energy jet starts with a high virtuality, much greater than medium scale

→ Parton shower well approximated by vacuum-like splittings (late stages?)
The hybrid strong/weak coupling model

Basis: exploit scale separation

High energy jet starts with a **high virtuality**, much greater than medium scale

→ Parton shower well approximated by **vacuum-like** splittings (late stages?)

Plasma-jet interaction dominated by **temperature scale**, order Λ_{QCD}

→ Use non-perturbative **holographic** prescription for partonic energy loss

Energy flowing into hydro modes:

\[
\frac{1}{E_{in}} \frac{dE}{dx} = -\frac{4}{\pi} \frac{x^2}{x_{stop}^2} \frac{1}{\sqrt{x_{stop}^2 - x^2}}
\]

Chesler & Rajagopal - PRD '14, JHEP '16

\[
x_{\text{stop}} = \frac{1}{2} \frac{E_{in}^{1/3}}{\kappa_{SC} T^{4/3}}
\]

$O(1)$ free parameter
The hybrid strong/weak coupling model

Basis: exploit scale separation

High energy jet starts with a high virtuality, much greater than medium scale

- Parton shower well approximated by vacuum-like splittings (late stages?)

Plasma-jet interaction dominated by temperature scale, order Λ_{QCD}

- Use non-perturbative holographic prescription for partonic energy loss

Energy flowing into hydro modes:

$$\frac{1}{E_{\text{in}}} \frac{dE}{dx} = -\frac{4}{\pi} \frac{x^2}{x_{\text{stop}}^2} \sqrt{x_{\text{stop}}^2 - x^2}$$

Estimate the hadronic spectra coming from medium response

(assume small perturbation, instantaneous hydrodynamization)

- Lost jet energy converted into soft particles at large angles (corr. bkgd.)

Pablo et al. - JHEP '14, '16, '17

Chesler & Rajagopal - PRD '14, JHEP '16

Daniel Pablos
Finite resolution effects

Weak coupling:
- interplay between antenna angle, formation time and emission wavelength
- medium interactions can destroy antenna color correlations

 \[\text{radiation from the global charge only if system not resolved by QGP} \]

Strong coupling:
- quark-gluon system emulated by string with kink
- stopping distance modulated by angular separation between endpoint & kink

 \[\text{needs further study!} \]

In Hybrid Model:
- unresolved dipoles lose energy as a single effective excitation
- two partons are resolved if their separation is greater than resolution length \(L_{\text{res}} \sim \lambda_D \)

\[\text{see Z. Hulcher’s poster later today} \]
Finite resolution effects have an impact on jet substructure, e.g. on jet FFs. They affect the relation between R_{AA}^{jet} and R_{AA}^{had} as well.

Hulcher et al. - JHEP '18
Model implementation & Fitting

PDFs: CTEQ6L1 (pp) & CTEQ6L1+EPS09 (AA)

Jet Production: PYTHIA 8.230 (kinematics) & MC Glauber (trans. position)

Jet Branching: PYTHIA 8.230. Space-time picture through τ_F argument

Hydro Profile: smooth profiles from C. Shen

Energy Loss: apply holographic dE/dx in between splittings

Jet Hadronization: Lund string model from PYTHIA (pp & AA)

Medium Response: Perturbed Cooper-Frye, 4-mom. cons. with Metropolis

χ^2 **Goodness of Fit Test**

- Find best κ for a given value of $L_{res} = \{0, 2/\pi T, 5/\pi T\}$

Data

- ATLAS and CMS, jet & hadron ($p_T > 10$ GeV) most central data
- PHENIX, hadron ($p_T > 5$ GeV) most central data

- Consider different error nature (stat., syst. uncorr., syst. corr., norm.) (following PHENIX PRC 08 arXiv:0801.1665)
Results

Consistent, but some tension between hadrons & jets preferred value

\[L_{res} = 0 \]

CMS Had 5.02
ATLAS Had 5.02
CMS Had 2.76
ATLAS Had 2.76
RHIC Had 0.20
CMS Jets R=0.2 2.76
CMS Jets R=0.3 2.76
CMS Jets R=0.4 2.76
ATLAS Jets R=0.4 2.76
ATLAS Jets R=0.5 2.76

* with LHC data only

In preparation

Daniel Pablos
17
McGill / JETSCAPE
Results

With increasing L_{res}, hadrons & jets preferred value is more similar…

$L_{res} = 2/\pi T$

In preparation

* with LHC data only

Hadrons 0-5% Jets 0-10%

Daniel Pablos

McGill / JETSCAPE
Results

\[L_{res} = \frac{2}{\pi T} \]

Although quality of global fit stays roughly the same (see backup).

\[L_{res} = \frac{5}{\pi T} \]

In the backup.
Extracted jet FFs

ATLAS Prelim. Data

\(L_{res} = 0 \)
\(L_{res} = \frac{2}{\pi T} \)

125 < \(p_T^{jet} \) < 160 GeV

\(|y| < 2.1, R = 0.4\)

\(\sqrt{s} = 5.02\) ATeV

\(\kappa \in \{0.395, 0.420\} \)
\(\kappa \in \{0.420, 0.445\} \)

(global fits)
Conclusions & Outlook

- Hybrid Model successfully describes central hadron & jet data, simultaneously!

- There is some tension between RHIC and LHC data, pointing toward a larger κ in the RHIC plasma, but the tension is only at the 3 σ level.

- High z region of jet FFs, which relates hadron with jet spectrum, shows an enhancement in AA/pp ratio:
 - wider jets lose more energy, final distribution biased toward narrow jets
 - inner jet structure important for jet quenching phenomenology

- Jet FFs are notably dependent on finite resolution effects, and so is the relation between hadron and jet suppression:
 - motivates introduction of such effects in other jet quenching MCs
 - can be specially constraining for pQCD
 (both suppression & coherence angle depend on \hat{q})
\[L_{res} = \frac{2}{\pi T} \]

\(\kappa \in \{0.420, 0.445\} \) (global fit)

\(\sqrt{s} = 5.02 \text{ ATeV} \)
\(\sqrt{s} = 2.76 \text{ ATeV} \)
Results

In preparation

Daniel Pablos
23
McGill / JETSCAPE
Significance of results

\[L_{res} = 0 \]
\[L_{res} = \frac{2}{\pi T} \]
\[L_{res} = \frac{5}{\pi T} \]

p-value \approx 0.03

CMS Had 5.02
ATLAS Had 5.02
CMS Had 2.76
ATLAS Had 2.76
RHIC Had 0.20
CMS Jets R=0.2 2.76
CMS Jets R=0.3 2.76
CMS Jets R=0.4 2.76
ATLAS Jets R=0.4 5.02
ATLAS Jets R=0.4 2.76

\[\chi^2_{\min}/\nu \]

* with LHC data only
Wider, more active jets lose more energy than narrower, hard fragmenting ones

Effect seen in the literature, for different models, on different observables

- Holographic “jets”
- JEWEL
- Hybrid Model

Even though each individual jet widens, final distribution is narrower

Initial jet ensemble binned in energy and width

CMS’ jet shapes ratio

\[\frac{\rho(t)}{\rho_{pp}} \]

Brewer et al. - JHEP ‘18
Wider jets lose more energy

Wider, more active jets lose more energy than narrower, hard fragmenting ones

Effect seen in the literature, for different models, on different observables

Holographic “jets”

JEWEL

Hybrid Model

Dijet asymmetry dominated by mass to momentum ratio, proxy for # vacuum splittings

Milhano & Zapp - EPJ ‘16
Wider jets lose more energy

Wider, more active jets lose more energy than narrower, hard fragmenting ones

Effect seen in the literature, for different models, on different observables

- Holographic “jets”
- JEWEL
- Hybrid Model

Jet spectra ratio among different R

Larger R jets more quenched due to more energy loss sources

Pablos et al. - JHEP '17
Finite resolution effects

For a fixed p_T:

less quenching because
less # resolved charges
Finite resolution effects

As a function of p_T: steeper slope because additional partons not resolved

In preparation
Finite resolution effects

In other words: resolvable fluctuations induce additional quenching at high p_T

0-5% Centrality
$\sqrt{s} = 5.02$ ATeV
$\kappa = 0.42$

Hadrons $L_{res} = 0$
Hadrons $L_{res} \to \infty$
Jets $R=0.4$ $L_{res} = 0$
Jets $R=0.4$ $L_{res} \to \infty$

see K. Tywoniuk’s talk on Wed.
The effect of nuclear PDFs

\[T_c = 145 \text{ MeV}, \quad L_{\text{res}} = \frac{2}{\pi T} \]

\[\kappa_{SC} = 0.395 \]

0 – 5%

\[\sqrt{s} = 5.02 \text{ ATeV} \]
Model improvements

Current medium response approximation cannot account for semi-hard regime (see CMS jet shapes, ATLAS & CMS jet FFs, CMS ‘missing-pt’)

Medium modified hadronization effects

Presence of rare, hard momentum transfers inducing extra splittings