Analytical solutions for higher order hydrodynamics in Bjorken and Gubser flows

Chandrody Chattopadhyay

Tata Institute of Fundamental Research, Mumbai

Quark Matter, Venice, Italy
May 16, 2018
(to appear on arXiv soon)

Collaborators: Amaresh Jaiswal (NISER, Bhubaneswar), Sunil Jaiswal (TIFR, Mumbai), Subrata Pal (TIFR, Mumbai)
Outline

- Systematic approach of deriving an out-of-equilibrium ‘hydrodynamic’ theory from Kinetic theory
- Solutions of third-order ‘hydrodynamics’ for Bjorken expansion
- Approximations using different series solutions
- Higher-order hydrodynamics in Gubser flow: Analytical Results
- Gradient expansion and slow-roll series for third-order hydro
- Emergent attractor behavior in hydrodynamics
Viscous hydro from Kinetic theory

- $T^{\mu\nu}(x)$ in terms of phase-space distribution function:

$$T^{\mu\nu}(x) = \int dp \ p^\mu p^\nu f(x, p) = \epsilon u^\mu u^\nu - P\Delta^{\mu\nu} + \pi^{\mu\nu}.$$

- Write $f = f_{eq} + \delta f$; For Boltzmann statistics, $f_{eq} \equiv \text{Exp}\left[\frac{-p^\mu u_\mu}{T}\right].$

- Deviation from local equilibration \Rightarrow Dissipation,

$$\pi^{\mu\nu} = \int dp \ p^{\langle \mu} p^{\nu \rangle} f(x, p),$$

$$A^{\langle \mu\nu \rangle} \equiv \Delta^{\mu\nu}_{\alpha\beta} A_{\alpha\beta}.$$
Perturbative solution of Boltzmann equation

- Boltzmann Eq. in relaxation-time approximation,

\[p^\mu \partial_\mu f = -(u \cdot p) \frac{\delta f}{\tau_\pi}, \]

\(\tau_\pi \) is the relaxation time.

- Solve perturbatively assuming small relaxation time \(\tau_\pi \).

- To first- and second-order in derivatives,

\[\delta f^{(1)} = -\frac{\tau_\pi}{u \cdot p} p^\mu \partial_\mu f_{eq}, \]

\[\delta f^{(2)} = \frac{\tau_\pi}{u \cdot p} p^\mu p^\nu \partial_\mu \left(\frac{\tau_\pi}{u \cdot p} \partial_\nu f_{eq} \right). \]
Equations of shear stress tensor

▶ Up to first-order in derivatives

\[
\pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} \int dp \ p^{\alpha} \ p^{\beta} \ \delta f^{(1)} = 2\tau_{\pi} \beta_{\pi} \sigma^{\mu\nu}
\]

\[
\beta_{\pi} = 4P / 5
\]

▶ Resummation at second-order:

\[
\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = -\int dp \ p^{\mu} \ p^{\nu} \ p^{\gamma} \nabla_{\gamma} f
\]

▶ Second-order equation for \(\pi^{\mu\nu} \)

\[
\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi} \sigma^{\mu\nu} + 2\pi^{\langle\mu\omega^{\nu}\rangle}_{\gamma} - \frac{10}{7} \pi^{\langle\mu\sigma^{\nu}\rangle}_{\gamma} - \frac{4}{3} \pi^{\mu\nu} \theta,
\]

where \(\omega^{\mu\nu} \equiv (\nabla^{\mu} u^{\nu} - \nabla^{\nu} u^{\mu}) / 2 \) is the vorticity tensor.
To third-order in derivatives,

\[\dot{\pi}^{\langle \mu \nu \rangle} = -\frac{\pi^{\mu \nu}}{\tau_\pi} + 2\beta_\pi \sigma^{\mu \nu} + 2\pi^{\gamma \omega}^{\langle \mu \omega \nu \rangle} - \frac{10}{7} \pi^{\gamma \sigma}^{\langle \mu \sigma \nu \rangle} - \frac{4}{3} \pi^{\mu \nu} \theta \]

\[+ \frac{25}{7\beta_\pi} \pi^\rho^{\langle \mu \omega \nu \rangle}^{\gamma} \pi^\rho_{\gamma} - \frac{1}{3\beta_\pi} \pi^{\gamma \rho}^{\langle \mu \rho \nu \rangle} \theta - \frac{38}{245\beta_\pi} \pi^{\mu \nu} \pi^\rho_{\gamma} \sigma^\rho_{\gamma} \]

\[- \frac{22}{49\beta_\pi} \pi^\rho^{\langle \mu \pi \nu \rangle}^{\gamma} \sigma^\rho_{\gamma} - \frac{24}{35} \nabla^{\langle \mu \rangle} \left(\pi^\nu_{\gamma} \dot{u}_{\gamma} \tau_\pi \right) \]

\[+ \frac{4}{35} \nabla^{\langle \mu \rangle} \left(\tau_\pi \nabla^{\gamma} \pi^\nu_{\gamma} \right) - \frac{2}{7} \nabla^{\gamma} \left(\tau_\pi \nabla^{\langle \mu \pi \nu \rangle} \right) \]

\[+ \frac{12}{7} \nabla^{\gamma} \left(\tau_\pi \dot{u}_{\gamma}^{\langle \mu \pi \nu \rangle} \right) - \frac{1}{7} \nabla^{\gamma} \left(\tau_\pi \nabla^{\gamma} \pi^{\langle \mu \nu \rangle} \right) \]

\[+ \frac{6}{7} \nabla^{\gamma} \left(\tau_\pi \dot{u}_{\gamma}^{\langle \mu \nu \rangle} \pi^{\langle \mu \nu \rangle} \right) - \frac{2}{7} \tau_\pi \omega^\rho^{\langle \mu \omega \nu \rangle} \pi^\rho_{\gamma} \]

\[- \frac{2}{7} \tau_\pi \pi^\rho_{\gamma}^{\langle \mu \omega \nu \rangle} \omega^\rho_{\gamma} - \frac{10}{63} \tau_\pi \pi^{\mu \nu} \theta^2 + \frac{26}{21} \tau_\pi \pi^\gamma_{\gamma}^{\langle \mu \omega \nu \rangle} \theta \]
Bjorken flow

- For boost-invariant longitudinal expansion, $v^z = \frac{z}{t}$, $v^x = v^y = 0$.

- Milne coordinate system: proper time $\tau = \sqrt{t^2 - z^2}$ and space-time rapidity $\eta_s = \tanh^{-1}(z/t)$.

\[
\frac{d\epsilon}{d\tau} = -\frac{1}{\tau} \left(\frac{4}{3} \epsilon - \pi \right),
\]
\[
\frac{d\pi}{d\tau} = -\frac{\pi}{\tau} + \frac{1}{\tau} \left(\frac{4}{3} \beta_\pi - (\lambda + \frac{4}{3})\pi - \chi \frac{\pi^2}{\beta_\pi} \right),
\]

The transport coefficients are,

\[
\beta_\pi = \frac{4P}{5}, \quad \lambda = \frac{10}{21}, \quad \chi = \frac{72}{245}.
\]
Proper time evolution of pressure anisotropy

$T_0 = 300 \text{ MeV, } \tau_0 = 0.25 \text{ fm/c}$

- $\eta/s = 1/4\pi$
- $\eta/s = 3/4\pi$
- $\eta/s = 10/4\pi$

- Exact RTA
- CE higher-order
- Israel-Stewart
Assume a constant relaxation time and define $\bar{\pi} = \pi / (\epsilon + P)$.

Using a rescaled variable $\hat{\tau} = \tau / \tau_{\pi}$,

\[
\frac{d\bar{\pi}}{d\hat{\tau}} = -\bar{\pi} + \frac{1}{\hat{\tau}} \left(a - \lambda \bar{\pi} - \left(\frac{4}{3} + 5\chi \right) \bar{\pi}^2 \right)
\]

Convert to second-order linear differential equation via

\[
\frac{1}{y} \frac{dy}{d\hat{\tau}} = \left(\frac{4}{3} + 5\chi \right) \frac{\bar{\pi}}{\hat{\tau}},
\]

\[
\frac{d^2 y}{d\hat{\tau}^2} + \left(1 + \frac{1 + \lambda}{\hat{\tau}} \right) \frac{dy}{d\hat{\tau}} - \frac{4(a + \chi)}{3} \frac{y}{\hat{\tau}^2} = 0
\]

where $a = 4/15$.
General solution of this linear ODE is in terms of Whittaker functions $M_{k,m}(\hat{\tau})$ and $W_{k,m}(\hat{\tau})$:

$$y(\hat{\tau}) = Ae^{-\hat{\tau}/2} \hat{\tau}^k \left[M_{k,m}(\hat{\tau}) + \alpha W_{k,m}(\hat{\tau})\right],$$

where A and α are constants.

$$k = -\frac{\lambda+1}{2}, \quad m = \frac{1}{2} \sqrt{\frac{16}{3} (a + \chi)} + \lambda^2.$$

Solution for $\bar{\pi}$ is

$$\bar{\pi}(\hat{\tau}) = \frac{\pi}{\epsilon + P} = \frac{[6k + 6m + 3] M_{k+1,m}(\hat{\tau}) - 6\alpha W_{k+1,m}(\hat{\tau})}{8(1 + \frac{\chi}{a}) [M_{k,m}(\hat{\tau}) + \alpha W_{k,m}(\hat{\tau})]}.$$
Emergent attractor behavior

- Want to look at late time behavior of

\[
\bar{\pi}(\hat{\tau}) = \frac{\pi}{\epsilon + P} = \frac{[6k + 6m + 3] M_{k+1,m}(\hat{\tau}) - 6\alpha W_{k+1,m}(\hat{\tau})}{8(1 + \frac{\chi}{\alpha}) [M_{k,m}(\hat{\tau}) + \alpha W_{k,m}(\hat{\tau})]}
\]

- Want to approximate late time approach to universal curve

- Consider the object

\[
\frac{\partial \bar{\pi}}{\partial \alpha}
\]

and take \(\hat{\tau} \to \infty \)

- Using the analytical solution of \(\bar{\pi} \) we get

\[
\frac{\partial \bar{\pi}}{\partial \alpha} \sim \frac{e^{-\hat{\tau}}}{\hat{\tau}}
\]
The attractor solution

Proper time evolution of normalised shear

\[\frac{\tau}{(\varepsilon + P)} \]

Third-order
Second-order

Chandrodoy Chattopadhyay
Quark Matter 2018
Write $\bar{\pi}$ as a gradient-series:

$$\bar{\pi} = a \sum \frac{c_n}{\hat{\tau}^n}$$

Substituting in

$$\frac{d\bar{\pi}}{d\hat{\tau}} + \bar{\pi} + \frac{\lambda \bar{\pi}}{\hat{\tau}} - \frac{a}{\hat{\tau}} + \left(\frac{4}{3} + 5\chi\right) \frac{\bar{\pi}^2}{\hat{\tau}} = 0$$

Recursion relation for the coefficients for $n \geq 1$:

$$c_{n+1} = n c_n - \lambda c_n + 5 a (a + \chi) \sum_{m=0}^{n} c_m c_{n-m}$$

$c_1 = 1$, $c_2 = 1 - \lambda$, , $c_3 = (1 - \lambda)(2 - \lambda + 10a(a + \chi))$, ...
Gradient expansion as a perturbation series

- Label each term by the number of gradients:

\[
\epsilon \frac{d \bar{\pi}}{d \hat{\tau}} + \bar{\pi} + \epsilon \frac{\lambda \bar{\pi}}{\hat{\tau}} - \frac{a}{\hat{\tau}} + \epsilon^2 \left(\frac{4}{3} + 5 \chi \right) \frac{\bar{\pi}^2}{\hat{\tau}} = 0
\]

- Consider a perturbative expansion

\[
\bar{\pi} = \sum_n \bar{\pi}_n(\hat{\tau}) \epsilon^n
\]

- The series:

 order \(\epsilon^0 \) : \(\bar{\pi}_0 = \frac{a}{\hat{\tau}} \),

 order \(\epsilon \) : \(\bar{\pi}_1 = \frac{a(1 - \lambda)}{\hat{\tau}^2} \),

 order \(\epsilon^2 \) : \(\bar{\pi}_2 = (1 - \lambda)(2 - \lambda + 10a(a + \chi))/\hat{\tau}^3 \)

- Same as the gradient expansion
The gradient approximation

The gradient series in IS and third-order theories

\[\pi/(\varepsilon + P) \]
Assume that time-evolution of $\bar{\pi}$ is ‘slow’; no restriction on gradients:

$$
\epsilon \frac{d\bar{\pi}}{d\hat{\tau}} = -\bar{\pi} + \frac{1}{\tau} \left(a - \lambda \bar{\pi} - \left(\frac{4}{3} + 5\chi \right) \bar{\pi}^2 \right)
$$

Assume perturbative series solution:

$$
\bar{\pi} = \sum \pi_n \epsilon^n
$$

$$
\bar{\pi}_0 = \frac{1}{2(4/3 + 5\chi)} \left(\sqrt{(4/3 + 5\chi)4a + (\lambda + \hat{\tau})^2} - \lambda - \tau \right)
$$

The general relation:

$$
\bar{\pi}_n = \frac{-1}{\sqrt{(4/3 + 5\chi)4a + (\lambda + \hat{\tau})^2}} \left[\hat{\tau} \frac{d\bar{\pi}}{d\hat{\tau}} + \left(\frac{4}{3} + 5\chi \right) \sum_{m=1}^{n-1} \bar{\pi}_{n-m} \bar{\pi}_m \right]
$$
The slow roll solution in IS and third-order theories
Gubser Flow

- $v^z = z/t, \quad u^r(x) \neq 0, \quad u^\phi(x) = 0$.

- Suitably described in de Sitter coordinates $(\rho, \theta, \phi, \eta)$, in which $u^\mu = (1, 0, 0, 0)$,

$$
\rho = - \sinh^{-1} \left(\frac{1 - q^2 \tau^2 + q^2 r^2}{2q\tau} \right), \quad \theta = \tan^{-1} \left(\frac{2qr}{1 + q^2 \tau^2 - q^2 r^2} \right),
$$

$1/q \approx$ transverse size.

- Weyl rescaled unitless quantities,

$$
\epsilon(\tau, r) = \frac{\hat{\epsilon}(\rho)}{\tau^4}, \quad \pi_{\mu\nu}(\tau, r) = \frac{1}{\tau^2} \frac{\partial \hat{X}^\alpha}{\partial x^\mu} \frac{\partial \hat{X}^\beta}{\partial x^\nu} \hat{\pi}_{\alpha\beta}(\rho).
$$

► Chapman-Enskog Method:

\[
\begin{align*}
\frac{d\hat{\epsilon}}{d\rho} &= - \left(\frac{8}{3} \hat{\epsilon} - \hat{\pi} \right) \tanh \rho, \\
\frac{d\hat{\pi}}{d\rho} &= - \frac{\hat{\pi}}{\hat{\tau}_\pi} + \tanh \rho \left(\frac{4}{3} \beta_\pi - \lambda \hat{\pi} - \chi \frac{\hat{\pi}^2}{\beta_\pi} \right).
\end{align*}
\]

See talk by Ulrich Heinz today at 18:10

► Assume constant relaxation time \(\hat{\tau}_\pi \).

► Decoupled equation for normalised shear \(\hat{\pi} \equiv \hat{\pi}/(\hat{\epsilon} + \hat{P}) \):

\[
\frac{d\hat{\pi}}{d\rho} = - \frac{\hat{\pi}}{\hat{\tau}_\pi} + \tanh \rho \left[a + \lambda \hat{\pi} \left(\frac{4}{3} + 5\chi \right) \hat{\pi}^2 \right].
\]
If the last non-linear term is ignored, we expect a solution of the form \(\hat{\pi}(\rho) \approx e^{-f(\rho)}g(\rho) \).

\[
f'(\rho) = -\left(\frac{1}{\hat{\tau}} - a \tanh \rho \right),
\]

\[
g(\rho) = a \int e^{\rho/\hat{\tau}} \cosh^\lambda \rho \tanh \rho \, d\rho + C
\]

\[
\hat{\pi}(\rho) = C e^{-\rho/\hat{\tau}} \cosh^\lambda \rho - \frac{a}{2\lambda_2} \, _2F_1[1, \lambda_1, 1 + \lambda_2, -e^{2\rho}]
\]

\[
+ \frac{e^{2\rho} a}{2(1 + \lambda_2)} \, _2F_1[1, 1 + \lambda_1, 2 + \lambda_2, -e^{2\rho}],
\]

where \(\lambda_1 = (1/\hat{\tau} - \lambda)/2 \) and \(\lambda_2 = (1/\hat{\tau} + \lambda)/2 \).
The full solution

- Ricatti type equation:

\[
\frac{d\hat{\pi}}{d\rho} = -\frac{\hat{\pi}}{\hat{\tau}_\pi} + \tanh \rho \left(a + \lambda \hat{\pi} - \gamma \hat{\pi}^2 \right)
\]

- Convert to second-order linear differential form using

\[
\frac{1}{y} \frac{dy}{d\rho} = \gamma \tanh \rho \frac{\hat{\pi}}{\hat{\tau}_\pi},
\]

followed by a variable transform, \(x = \tanh \rho \)

- The full equation,

\[
\frac{d^2y}{dx^2} + \frac{1}{1 - x^2} \left[\frac{1}{\hat{\tau}_\pi} - \frac{1}{x} - (1 + \lambda)x \right] \frac{dy}{dx} - \frac{a\gamma x^2}{(1 - x^2)^2} y = 0.
\]
Analytical solution Gubser 3rd order

Analytical solution for $\hat{\pi}$:

$$
\hat{\pi} = \left[c(tanh(\rho) + 1)^{-\frac{a_1}{4}} \left((1 + (\lambda + a_1)\hat{\pi})(tanh(\rho) - 1) - 4\hat{\pi}b_4(tanh(\rho) + 1) \right) HeunG(s)
+ (tanh(\rho) + 1)^{\frac{a_1}{4}} \left((1 + (\lambda - a_1)\hat{\pi})(tanh(\rho) - 1) - 4\hat{\pi}b_4(tanh(\rho) + 1) \right) HeunG(r)
- 4\hat{\pi}(tanh(\rho) - 1) \left(c(tanh(\rho) + 1)^{1-\frac{a_1}{4}} HeunGP(s) + (tanh(\rho) + 1)^{1+\frac{a_1}{4}} HeunGP(r) \right) \right] /
\left[4\phi tanh(\rho)\hat{\pi} \left(c(tanh(\rho) + 1)^{-\frac{a_1}{4}} HeunG(s) + (tanh(\rho) + 1)^{\frac{a_1}{4}} HeunG(r) \right) \right]
$$

Where HeunGP is HeunGPrime and

$$
r := [2, \frac{b_3 - b_2}{24 a_3}, \frac{a_1 + a_3}{4}, \frac{a_1 a_3 b_1}{4 a_3}, \frac{a_1}{2} + 1, -1, tanh(\rho) + 1]
$$

$$
s := [2, \frac{b_3 + b_2}{24 a_3}, -\frac{a_1 + a_3}{4}, -\frac{a_1 a_3 b_1}{4 a_3}, \frac{a_1}{2} + 1, -1, tanh(\rho) + 1]
$$
The solutions for various initial conditions in two theories
Gradient Expansion for Gubser flow: Third-order hydro

- Gradient expansion of:

\[
\frac{d\hat{\pi}^\rho}{d\rho} = -\frac{\hat{\pi}}{\hat{\tau}_\pi} + \tanh(\rho \left(a + \lambda\hat{\pi} - \gamma\hat{\pi}^2\right))
\]

- Contrary to Bjorken, θ ≡ 2 tanh ρ is not a good expansion parameter [G.S. Denicol, Jorge Noronha arXiv:1804.0477]

- Label each term by the order of gradients appearing,

\[
\epsilon \frac{d\hat{\pi}}{d\rho} = -\frac{\hat{\pi}}{\hat{\tau}_\pi} + \tanh(\rho \left(a + \epsilon\lambda\hat{\pi} - \epsilon^2\gamma\hat{\pi}^2\right))
\]

- Perturbative series solution

\[
\hat{\pi} = \sum \hat{\pi}_n \epsilon^n
\]
The gradient series in Gubser flow

- The Navier-Stokes term at order ϵ^0:
 \[\hat{\pi}_0 = a \hat{\tau}_\pi \tanh \rho \]

- order ϵ^1
 \[\hat{\pi}_1 = a \hat{\tau}_\pi^2 \left[\tanh^2 \rho (1 + \lambda) - 1 \right] \]

- Similarly,
 \[\hat{\pi}_2 = -\hat{\tau}_\pi \frac{d\hat{\pi}_1}{d\rho} + \hat{\tau}_\pi \tanh \rho \left(\lambda \hat{\pi}_1 - \gamma \hat{\pi}_0^2 \right) \]

- In general for $n \geq 2$
 \[\hat{\pi}_n = -\hat{\tau}_\pi \left[\frac{d\hat{\pi}_{n-1}}{d\rho} - \lambda \tanh(\rho) \hat{\pi}_{n-1} + \gamma \tanh \rho \sum_{m=0}^{n-2} \hat{\pi}_{n-2-m} \hat{\pi}_m \right] \]
The gradient approximation

The gradient series in IS and third-order theories for Gubser flow
As in Bjorken one can express
\[
\epsilon \frac{d\hat{\pi}}{d\rho} = - \frac{\hat{\pi}}{\hat{\tau}_\pi} + \tanh \rho \left(a + \lambda \hat{\pi} - \gamma \hat{\pi}^2 \right).
\]

Assume a perturbative solution \(\hat{\pi} = \sum \hat{\pi}_n \epsilon^n \)

The zeroeth order solution:
\[
\hat{\pi}_0 = \frac{\coth \rho}{2\gamma} \left[-\frac{1}{\tau_\pi} + \lambda \tanh \rho + \sqrt{4a\gamma \tanh^2 \rho + \left(\frac{1}{\tau_\pi} - \lambda \tanh \rho \right)^2} \right]
\]

General recursive relation
\[
\hat{\pi}_n = -\frac{\tau_\pi}{\sqrt{(1 - \lambda \tau_\pi \tanh \rho)^2 + 4a\gamma \tau_\pi^2 \tanh^2 \rho}} \left[\frac{d\hat{\pi}_{n-1}}{d\rho} \right.
\]
\[
+ \gamma \tanh \rho \sum_{m=1}^{n-1} \hat{\pi}_{n-m} \hat{\pi}_m \left. \right]
\]
Slow-roll approximation

The slow roll solution in two theories
Conclusions

- Derived analytical solutions for higher-order evolution equations in Bjorken and Gubser flows.
- Obtained attractor behavior for time evolution of normalised shear.
- Quantified the effects of various transport coefficients on determining the attractor.
- Future work: Investigate the presence of attractors in realistic flow profiles with lesser symmetries.