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Motivation & Questions

I Why does Hydrodynamics work outside it’s regime of
applicability?

I What qualitative changes do we observe as we interpolate
between gauge theories at infinite and finite coupling?

We will be studying the Tµν of strongly coupled, conformal, boost
invariant field theories that relax to Bjorken Flow at late times.
Our Paper: [1712.02772]

This amounts to studying the Anisotropy R(w) as a function of
the dimensionless parameter w = τT .

R(w) =
PT − PL
PTot

. (1)
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Cartoon of Heavy Ion Collision: Scenario 1

R(w)

w = τT

Figure: Early system dynamics has a microscopic description that relaxes
to a common curve, called the Attractor. The late time dynamics should
be described by Hydrodynamics when gradients are small (w = τT > 1).
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Cartoon of Heavy Ion Collision: Scenario 1

R(w)

w = τT

Attractor

Viscous Hydro

1
τT ∼ O(1)

Figure: Early system dynamics has a microscopic description that relaxes
to a common curve, called the Attractor. The late time dynamics should
be described by Hydrodynamics when gradients are small (w = τT > 1).
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Cartoon of Heavy Ion Collision: Scenario 2

R(w)

w = τT

Attractor

Viscous Hydro

1
τT ∼ O(1)

Figure: Early system dynamics has a microscopic description that relaxes
to a common curve, called the Attractor. The late time dynamics should
be described by Hydrodynamics when gradients are small (w = τT > 1).
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Problem Set-up

I We will use Gauss-Bonnet Gravity (a higher derivative theory
of gravity) to study gauge theories at intermediate coupling
through the Gauge-Gravity duality.

I One can find,
η

s
=

1− λGB
4π

(2)

where λGB is a parameter of the theory we can tune to pick
out our preferred coupling.
The case λGB = 0 is Einstein Gravity (N = 4 SYM) and was
studied by M. Heller, R. Janik, P. Witaszczyk. 2013.

I We calculate the hydrodynamic expansion for the Anisotropy
R(w), where powers of w−1 = 1

τT corresponds to orders in
gradients:

R(w) = r1w
−1︸ ︷︷ ︸

1st order
viscous hydro

+ r2w
−2 + r3w

−3 + ...︸ ︷︷ ︸
Further gradient corrections

(3)
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Gravity Solution & Hydrodynamics

The Action for Gauss-Bonnet Gravity is given by,

S =

∫
d5x
√
−g
(
R+ 12 +

λGB
2

(
RµνρσR

µνρσ − 4RµνR
µν +R2

))
,

the solution takes the form of a power series in τ−2/3 ∼ w:

ds2 = A(r, τ)dτ2 + 2dτdr +B(r, τ)dη2 + C(r, τ)dx2⊥ (4)

where

A(τ, r) ∼
∑
i=0

τ−
2
3 iAi(s) , s = r−1τ−1/3

B(τ, r) ∼
∑
i=0

τ−
2
3 iBi(s)

C(τ, r) ∼
∑
i=0

τ−
2
3 iCi(s)

and reproduces the desired form of the Anisotropy

R(w) = r1w + r2w
2 + r3w

3 + ...
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Resurgence

The coefficients rn calculated from our gravity solution shows that
each Hydrodynamic series does not converge.
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Figure: Anisotropy co-efficients showing rn ∼ n! as a function of order n.
rn are displayed for λGB = 0, -0.1, -0.2, -0.5, and -1.
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Resurgence

We rewrite the divergent series a Laplace Transform,

R(w) = r1w
−1 + r2w

−2 + r3w
−3 + ...

= w

∞eiθ∫
0

du e−uw
(r1
1!
w−1 +

r2
2!
w−2 +

r3
3!
w−3 + ...

)
︸ ︷︷ ︸

The Borel Transform RB(u)

Any Laplace transform of
the Pade Approximant of
RB(w) is meant to be a
valid solution, which means
that to the linearized level
the difference between two
contours will also be a so-
lution.
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-40

-20
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u
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Resurgence

R(w)

w

Figure: Choosing one contour leads to one particular evolution. Including
linear combinations of the non-hydrodynamic solutions leads to a
characteristic spread of solutions. These different choices amount to
assigning different initial data to the system.
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Resurgence
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Figure: Resummed R(w) plus non-hydrodynamic solutions with varied
initial conditions. We define the Hydrodynamization Time as the w
where R(w) deviates from it’s first order truncation by 10%. 1st order
hydro is given by the red dashed curve.
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What are these fluctuations?
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Figure: Non-hydrodynamic information is encoded in the poles (grey
dots) of RB(u) for λGB = 0, M. Heller, R. Janik, P. Witaszczyk. 2013.
We can identify QNM’s (colourful dots) as the non-hydrodynamic modes
of the microscopic theory, computed by A. Starinets. 2002.
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Intermediate Coupling Effects
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Figure: Non-hydrodynamic information is encoded in the poles (grey
dots) of RB(u) for λGB = −0.1. We can identify QNM’s (colourful dots)
as the non-hydrodynamic modes of the microscopic theory, computed by
S. Grozdanov, N. Kaplis, A. O. Starinets. 2016.
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Intermediate Coupling Effects
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Figure: Non-hydrodynamic information is encoded in the poles (grey
dots) of RB(u) for λGB = −0.2. We can identify QNM’s (colourful dots)
as the non-hydrodynamic modes of the microscopic theory, computed by
S. Grozdanov, N. Kaplis, A. O. Starinets. 2016.
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Intermediate Coupling Effects
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Figure: Non-hydrodynamic information is encoded in the poles (grey
dots) of RB(u) for λGB = −0.5. We can identify QNM’s (colourful dots)
as the non-hydrodynamic modes of the microscopic theory, computed by
S. Grozdanov, N. Kaplis, A. O. Starinets. 2016.
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Intermediate Coupling Effects
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Figure: Non-hydrodynamic information is encoded in the poles (grey
dots) of RB(u) for λGB = −1. We can identify QNM’s (colourful dots)
as the non-hydrodynamic modes of the microscopic theory, computed by
S. Grozdanov, N. Kaplis, A. O. Starinets. 2016.
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Intermediate Coupling Effects
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Figure: There are qualitative similarities with the RB(u) for Conformal
RTA Kinetic theory. M. Heller, A. Kurkela, M. Spalinski, V. Svensson.
2016.
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Intermediate Coupling Effects
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Figure: Applying similar methodology in the case of finite coupling, we
can estimate the characteristic spread of solutions as they decay to the
attractor. In all cases we study the result is well approximated by 1st

order hydrodynamics (red dashed line).
23



Conclusion

I Why does Hydrodynamics work outside it’s regime of
applicability?

– Our estimate of this regime relies on the series converging, which it
does not.

– All you can do to justify hydrodynamics is to resum the series and
compare to truncations.

I What qualitative changes do we observe as we interpolate
between gauge theories at infinite and finite coupling?

– At finite coupling our microscopic theory gains a dissipative mode,
compatible with kinetic theory.

– Comparing the full resummation to the truncated series, 1st order
viscous hydro works very well in all cases.
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Back up slides
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Hydrodynamics in 3+1 Dimensions

The equation of motion for Hydrodynamics is the conservation
equation

∇µTµν = 0 (7)

where Tµν = Tµν(ε, P, uµ) with ε the energy density, P the
Pressure, and uµ the fluid velocity.

For a perfect fluid

Tµνideal = (ε0 + P0)u
µuν − P0η

µν . (8)

For a non-ideal fluid, we include every possible tensor combination
of ∂µ, uµ and ηµν with co-efficients ci.

Tµν = Tµνideal+c1∂
µuν+c2∂

νuµ+c3η
µν∂αu

α+c4u
µuν∂αu

α+... (9)
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Hydrodynamics in 3+1 Dimensions

When ∂u is small we can order the series in derivatives of uµ

Tµν = Tµνideal +O(∼ ∂µuν) +O(∼ (∂µuν)2) + ... (10)

I This series is known as the Gradient Expansion.

I The co-efficients ci are known as transport co-efficients and
uniquely specify our theory.
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The Fluid-Gravity correspondence

We can perform classical gravity calculations to find strongly
coupled QFT results.

Gravity Solution

Hydrodynamical QFT

Figure: A full microscopic description would .
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The Fluid-Gravity correspondence

We can construct a dynamical gravity solution which will be dual
to Bjorken Flow for N = 4 SYM:

Black Hole Geometry

Hydrodynamical QFT

Figure: Some Gauge theories and Gravity theories are conjectured to be
the same theory under a field redefinition.
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