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Outline

The POWLANG transport setup (hard event + transport + in-medium
hadronization)

Event-by event fluctuations and development of HF azimuthal anisotropies
(v2 and v3) in heavy-ion collisions

Event-shape engineering and HF observables: preliminary studies
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The POWLANG transport setup

The POWLANG setup

QQ production;

HQ transport;

HQ hadronization.
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The POWLANG transport setup

HQ production: NLO calculation + Parton Shower

ISR
(PYTHIA) FSR

(PYTHIA)

Hard Process
(POWHEG)

A convenient automated tool to simulate the initial QQ production (the
POWHEG-BOX package) interfaces the output of a NLO event-generator
for the hard process with a parton-shower describing the Initial and Final
State Radiation and modeling other non-perturbative processes (intrinsic kT ,
MPI, hadronizazion)

This provides a fully exclusive information on the final state

4 / 20



The POWLANG transport setup

Transport theory: the Boltzmann equation

Time evolution of HQ phase-space distribution fQ(t, x ,p)1:

d

dt
fQ(t, x ,p) = C [fQ ]

Total derivative along particle trajectory

d

dt
≡ ∂

∂t
+ v

∂

∂x
+ F

∂

∂p

Neglecting x-dependence and mean fields: ∂t fQ(t,p) = C [fQ ]

Collision integral:

C [fQ ] =

∫
dk[w(p + k , k)fQ(p + k)︸ ︷︷ ︸

gain term

−w(p, k)fQ(p)︸ ︷︷ ︸
loss term

]

w(p, k): HQ transition rate p → p − k

1Approach adopted by Catania, Nantes, Frankfurt, LBL...groups
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The POWLANG transport setup

From Boltzmann to Fokker-Planck

Expanding the collision integral for small momentum exchange2 (Landau)

C [fQ ] ≈
∫

dk

[
k i ∂

∂pi
+

1

2
k ik j ∂2

∂pi∂pj

]
[w(p, k)fQ(t, p)]

The Boltzmann equation reduces to the Fokker-Planck equation

∂

∂t
fQ(t, p) =

∂

∂pi

{
Ai (p)fQ(t, p) +

∂

∂pj
[B ij(p)fQ(t, p)]

}
where

Ai (p) =

∫
dk k iw(p, k) −→ Ai (p) = A(p) pi︸ ︷︷ ︸

friction

B ij(p) =
1

2

∫
dk k ik jw(p, k) −→ B ij(p) = (δij − p̂i p̂j)B0(p) + p̂i p̂jB1(p)︸ ︷︷ ︸

momentum broadening

Problem reduced to the evaluation of three transport coefficients,
directly derived from the scattering matrix

2B. Svetitsky, PRD 37, 2484 (1988)
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The POWLANG transport setup

The relativistic Langevin equation

The Fokker-Planck equation can be recast into a form suitable to follow the
dynamics of each individual quark arising from the pQCD Monte Carlo simulation
of the initial QQ production: the Langevin equation

∆pi

∆t
= − ηD(p)pi︸ ︷︷ ︸

determ.

+ ξi (t)︸︷︷︸
stochastic

,

with the properties of the white (∼ δtt′), multiplicative noise encoded in

〈ξi (pt)〉 = 0 〈ξi (pt)ξ
j(pt′)〉=bij(p)

δtt′

∆t
bij(p)≡κL(p)p̂i p̂j + κT (p)(δij−p̂i p̂j)

Transport coefficients related to the FP ones:

Momentum diffusion: κT (p) = 2B0(p) and κL(p) = 2B1(p)

Friction term, in the Ito pre-point discretization scheme, fixed by the
Einstein fluctuation-dissipation relation

ηIto
D (p) = A(p) =

B1(p)

TEp
−
[

1

p

∂B1(p)

∂p
+

d − 1

p2
(B1(p)− B0(p))

]
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The POWLANG transport setup

A first check: thermalization in a static medium
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If the Einstein relation is imposed, for t � 1/ηD HQ’s approach kinetic
equilibrium, with momenta described by a Maxwell-Jüttner distribution

fMJ(p) ≡ e−Ep/T

4πM2T K2(M/T )
, with

∫
d3p fMJ(p) = 1

The larger κ (κ ∼ T 3), the faster the approach to thermalization.
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The POWLANG transport setup

Transport coefficients: weak-coupling vs l-QCD

Weak-coupling (beauty shown)
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Lattice-QCD

Obtained accounting for Qq → Qq and
Qg → Qg scattering, with resummation of
medium effects for soft (|t| < |t|∗) collisions
(Hard Thermal Loop approximation)

Lattice QCD (M =∞)
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c
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3

∫ +∞

−∞
dt〈ξi (t)ξi (0)〉HQ

given by electric-field correlator,
available only for imaginary times
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The POWLANG transport setup

From quarks to hadrons

In the presence of a medium, rather then fragmenting like in the vacuum (e.g.
c → cg → cqq), HQ’s can hadronize by recombining with light thermal partons
from the medium.
In-medium hadronization may affect the RAA and v2 of final D-mesons due to the
collective flow of light quarks. We tried to estimate the effect through this model
interfaced to our POWLANG transport code:

At Tdec c-quarks coupled to light q’s from a local thermal distribution,
eventually boosted (uµfluid 6=0) to the lab frame;

Strings are formed and given to PYTHIA 6.4 to simulate their fragmentation
and produce the final hadrons (D + π + . . . )
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The POWLANG transport setup

From quarks to hadrons

Breaking of factorized description of hadronization dσh = dσf ⊗ Df→h in terms
of independent fragmentation functions already observed in hadronic collisions at
Fermilab and at SPS

u

d

du

u

c

c

d

u

D

d

D
+

−

π
−

p

Second endpoint boosts the string along the direction of the beam-remnant
(beam-drag effect), leading to an asymmetry in the rapidity distribution of
D+/D− mesons

A =
σD− − σD+

σD− + σD+
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Development of HF v2 and v3

New results at 5.02 TeV: D-meson v2 and v3 in Pb-Pb

The study of higher flow-harmonics in AA collisions requires a modeling of
initial-state event-by-event fluctuations. We perform a Glauber-MC sampling of
the initial conditions, each one characterized by a complex eccentricity

s(x) =
K

2πσ2

Ncoll∑
i=1

exp

[
− (x − x i )

2

2σ2

]
−→ εme

imΨm ≡ −
{
r2e imφ

}
{r2}

with orientation and modulus given by

Ψm =
1

m
atan2

(
−{r2 sin(mφ)},−{r2 cos(mφ)}

)
εm =

√
{r2
⊥ cos(mφ)}2 + {r2

⊥ sin(mφ)}2

{r2
⊥}

= −{r
2 cos[m(φ−Ψm)]}

{r2}

Exploiting the fact that, on an event-by-event basis, for m = 2, 3 vm ∼ εm we

consider an average background obtained summing all the events of a given

centrality class, each one rotated by its event-plane angle ψm, depending on the

harmonics one is considering.
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Development of HF v2 and v3

New results at 5.02 TeV: D-meson v2 and v3 in Pb-Pb
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CMS (and ALICE) data for D-meson v2,3 satisfactory described;

Recombination with light quarks provides a relevant contribution.
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Development of HF v2 and v3

Time development of azimuthal anisotropies
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10-30% centr. class

Most of the HQ’s decouple quite late (∼ 50% after 8 fm/c);

Final elliptic flow from a complex interplay of contributions from the whole
medium history;

HQ v2 correlated with the one of the fluid cell;

supplementary information from pT -differential analysis;
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Event-shape engineering

Eccentricity fluctuations
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Events within the same centrality class can be characterized by very different
eccentricities. Eccentricity distributions of different classes display a significant
overlap, in particular for ε3, which is less correlated with the impact parameter.

It is interesting to study in each class the 0-20% high-εn and the 0-60% low-εn
events. We want to extend this program, usually carried out for soft-hadrons

(ALICE Coll. PRC 93 (2016), 034916), to HF particles.
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Event-shape engineering

Eccentricity fluctuations
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Events within the same centrality class can be characterized by very different
eccentricities. Eccentricity distributions of different classes display a significant
overlap, in particular for ε3, which is less correlated with the impact parameter.

It is interesting to study in each class the 0-20% high-εn and the 0-60% low-εn
events. We want to extend this program, usually carried out for soft-hadrons

(ALICE Coll. PRC 93 (2016), 034916), to HF particles.
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Event-shape engineering

ESE and HF observables: nuclear modification factor
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The nuclear modification factor of charmed hadrons, within a given centrality

class, displays only a mild dependence on the initial eccentricity. This holds for

both choices of transport coefficients.
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Event-shape engineering

ESE and HF observables: elliptic flow
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Charmed hadron v2 is strongly affected by eccentricity fluctuations within a given

centrality class. The size of the effect looks independent from the choice of the

transport coefficients.
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Event-shape engineering

Selecting events at fixed eccentricity
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One can adopt a different strategy and select events of a given eccentricity (e.g.
0.3 < ε2 < 0.4) in the different centrality classes.

the RAA depends only on the centrality and not on ε2

the HF hadron v2 looks similar (at low-pT ) for events with the same ε2

belonging to different centrality classes. The scaling does not hold for quarks
(drag depends on medium density!). Hadronization plays an important role.
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Event-shape engineering

ESE and HF observables: elliptic flow
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First results obtained also for the triangular flow

Dependence of the HQ v3 on the transport coefficients;

Strong dependence on ε3 fluctuations;

HF v3 increased by in-medium hadronization (recombination)
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Conclusions

Conclusions

With initial conditions accounting for event-by-event fluctuations it is
possible to provide a consistent description of even and odd harmonics of HF
azimuthal anisotropies (v2 and v3);

The way is open to perform the study of HF observables within an
Event-Shape-Engineering analysis: the potential to extract information on
the initial conditions and on the transport coefficients of the medium has to
be explored;

More results going to become available soon.
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