Development of heavy-flavour flow-harmonics in high-energy nuclear collisions

Andrea Beraudo
INFN - Sezione di Torino
Quark Matter 2018
Venice, $14^{\text {th }}-19^{\text {th }}$ May 2018

Outline

- The POWLANG transport setup (hard event + transport + in-medium hadronization)
- Event-by event fluctuations and development of HF azimuthal anisotropies (v_{2} and v_{3}) in heavy-ion collisions
- Event-shape engineering and HF observables: preliminary studies

The POWLANG setup

- $Q \bar{Q}$ production;
- HQ transport;
- HQ hadronization.

HQ production: NLO calculation + Parton Shower

- A convenient automated tool to simulate the initial $Q \bar{Q}$ production (the POWHEG-BOX package) interfaces the output of a NLO event-generator for the hard process with a parton-shower describing the Initial and Final State Radiation and modeling other non-perturbative processes (intrinsic k_{T}, MPI, hadronizazion)
- This provides a fully exclusive information on the final state

Transport theory: the Boltzmann equation

Time evolution of HQ phase-space distribution $f_{Q}(t, \boldsymbol{x}, \boldsymbol{p})^{1}$:

$$
\frac{d}{d t} f_{Q}(t, \boldsymbol{x}, \boldsymbol{p})=C\left[f_{Q}\right]
$$

- Total derivative along particle trajectory

$$
\frac{d}{d t} \equiv \frac{\partial}{\partial t}+\boldsymbol{v} \frac{\partial}{\partial \boldsymbol{x}}+\boldsymbol{F} \frac{\partial}{\partial \boldsymbol{p}}
$$

Neglecting \boldsymbol{x}-dependence and mean fields: $\partial_{t} f_{Q}(t, \boldsymbol{p})=C\left[f_{Q}\right]$

- Collision integral:

$$
C\left[f_{Q}\right]=\int d \boldsymbol{k}[\underbrace{w(\boldsymbol{p}+\boldsymbol{k}, \boldsymbol{k}) f_{Q}(\boldsymbol{p}+\boldsymbol{k})}_{\text {gain term }}-\underbrace{w(\boldsymbol{p}, \boldsymbol{k}) f_{Q}(\boldsymbol{p})}_{\text {loss term }}]
$$

$w(\boldsymbol{p}, \boldsymbol{k}): \mathrm{HQ}$ transition rate $\boldsymbol{p} \rightarrow \boldsymbol{p}-\boldsymbol{k}$

[^0]
From Boltzmann to Fokker-Planck

Expanding the collision integral for small momentum exchange ${ }^{2}$ (Landau)

$$
C\left[f_{Q}\right] \approx \int d \boldsymbol{k}\left[k^{i} \frac{\partial}{\partial p^{i}}+\frac{1}{2} k^{i} k^{j} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}}\right]\left[w(\boldsymbol{p}, \boldsymbol{k}) f_{Q}(t, \boldsymbol{p})\right]
$$

[^1]
From Boltzmann to Fokker-Planck

Expanding the collision integral for small momentum exchange ${ }^{2}$ (Landau)

$$
C\left[f_{Q}\right] \approx \int d \boldsymbol{k}\left[k^{i} \frac{\partial}{\partial p^{i}}+\frac{1}{2} k^{i} k^{j} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}}\right]\left[w(\boldsymbol{p}, \boldsymbol{k}) f_{Q}(t, \boldsymbol{p})\right]
$$

The Boltzmann equation reduces to the Fokker-Planck equation

$$
\frac{\partial}{\partial t} f_{Q}(t, \boldsymbol{p})=\frac{\partial}{\partial p^{i}}\left\{A^{i}(\boldsymbol{p}) f_{Q}(t, \boldsymbol{p})+\frac{\partial}{\partial p^{j}}\left[B^{i j}(\boldsymbol{p}) f_{Q}(t, \boldsymbol{p})\right]\right\}
$$

where

$$
\begin{gathered}
A^{i}(\boldsymbol{p})=\int d \boldsymbol{k} k^{i} w(\boldsymbol{p}, \boldsymbol{k}) \longrightarrow \underbrace{A^{i}(\boldsymbol{p})=A(p) \boldsymbol{p}^{i}}_{\text {friction }} \\
B^{i j}(\boldsymbol{p})=\frac{1}{2} \int d \boldsymbol{k} k^{i} \boldsymbol{k}^{j} w(\boldsymbol{p}, \boldsymbol{k}) \longrightarrow \underbrace{B^{i j}(\boldsymbol{p})=\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right) B_{0}(p)+\hat{p}^{i} \hat{p}^{j} B_{1}(p)}_{\text {momentum broadening }}
\end{gathered}
$$

Problem reduced to the evaluation of three transport coefficients, directly derived from the scattering matrix

[^2]
The relativistic Langevin equation

The Fokker-Planck equation can be recast into a form suitable to follow the dynamics of each individual quark arising from the pQCD Monte Carlo simulation of the initial $Q \bar{Q}$ production: the Langevin equation

$$
\frac{\Delta p^{i}}{\Delta t}=-\underbrace{\eta_{D}(p) p^{i}}_{\text {determ. }}+\underbrace{\xi^{i}(t)}_{\text {stochastic }}
$$

with the properties of the white $\left(\sim \delta_{t t^{\prime}}\right)$, multiplicative noise encoded in

$$
\left\langle\xi^{i}\left(\boldsymbol{p}_{t}\right)\right\rangle=0 \quad\left\langle\xi^{i}\left(\boldsymbol{p}_{t}\right) \xi^{j}\left(\boldsymbol{p}_{t^{\prime}}\right)\right\rangle=b^{i j}(\boldsymbol{p}) \frac{\delta_{t t^{\prime}}}{\Delta t} \quad b^{i j}(\boldsymbol{p}) \equiv \kappa_{L}(p) \hat{p}^{i} \hat{p}^{j}+\kappa_{T}(p)\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right)
$$

The relativistic Langevin equation

The Fokker-Planck equation can be recast into a form suitable to follow the dynamics of each individual quark arising from the pQCD Monte Carlo simulation of the initial $Q \bar{Q}$ production: the Langevin equation

$$
\frac{\Delta p^{i}}{\Delta t}=-\underbrace{\eta_{D}(p) p^{i}}_{\text {determ. }}+\underbrace{\xi^{i}(t)}_{\text {stochastic }}
$$

with the properties of the white $\left(\sim \delta_{t t^{\prime}}\right)$, multiplicative noise encoded in

$$
\left\langle\xi^{i}\left(\boldsymbol{p}_{t}\right)\right\rangle=0 \quad\left\langle\xi^{i}\left(\boldsymbol{p}_{t}\right) \xi^{j}\left(\boldsymbol{p}_{t^{\prime}}\right)\right\rangle=b^{i j}(\boldsymbol{p}) \frac{\delta_{t t^{\prime}}}{\Delta t} \quad b^{i j}(\boldsymbol{p}) \equiv \kappa_{L}(p) \hat{p}^{i} \hat{p}^{j}+\kappa_{T}(p)\left(\delta^{i j}-\hat{p}^{i} \hat{p}^{j}\right)
$$

Transport coefficients related to the FP ones:

- Momentum diffusion: $\kappa_{T}(p)=2 B_{0}(p)$ and $\kappa_{L}(p)=2 B_{1}(p)$
- Friction term, in the lto pre-point discretization scheme, fixed by the Einstein fluctuation-dissipation relation

$$
\eta_{D}^{\mathrm{Ito}}(p)=A(p)=\frac{B_{1}(p)}{T E_{p}}-\left[\frac{1}{p} \frac{\partial B_{1}(p)}{\partial p}+\frac{d-1}{p^{2}}\left(B_{1}(p)-B_{0}(p)\right)\right]
$$

A first check: thermalization in a static medium

If the Einstein relation is imposed, for $t \gg 1 / \eta_{D} \mathrm{HQ}$'s approach kinetic equilibrium, with momenta described by a Maxwell-Jüttner distribution

$$
f_{M J}(p) \equiv \frac{e^{-E_{p} / T}}{4 \pi M^{2} T K_{2}(M / T)}, \quad \text { with } \int d^{3} p f_{M J}(p)=1
$$

The larger $\kappa\left(\kappa \sim T^{3}\right)$, the faster the approach to thermalization.

Transport coefficients: weak-coupling vs I-QCD

Weak-coupling (beauty shown)

Obtained accounting for $Q q \rightarrow Q q$ and $Q g \rightarrow Q g$ scattering, with resummation of medium effects for soft $\left(|t|<|t|^{*}\right)$ collisions (Hard Thermal Loop approximation)

Lattice QCD $(M=\infty)$

$$
\kappa=\frac{1}{3} \int_{-\infty}^{+\infty} d t\left\langle\xi^{i}(t) \xi^{i}(0)\right\rangle_{\mathrm{HQ}}
$$

given by electric-field correlator, available only for imaginary times

From quarks to hadrons

In the presence of a medium, rather then fragmenting like in the vacuum (e.g. $c \rightarrow c g \rightarrow c \bar{q} q$), HQ's can hadronize by recombining with light thermal partons from the medium.
In-medium hadronization may affect the $R_{A A}$ and v_{2} of final D-mesons due to the collective flow of light quarks. We tried to estimate the effect through this model interfaced to our POWLANG transport code:

- At $T_{\text {dec }} \mathrm{c}$-quarks coupled to light \bar{q} 's from a local thermal distribution, eventually boosted $\left(u_{\text {fluid }}^{\mu} \neq 0\right)$ to the lab frame;
- Strings are formed and given to PYTHIA 6.4 to simulate their fragmentation and produce the final hadrons ($D+\pi+\ldots$)

From quarks to hadrons

Breaking of factorized description of hadronization $d \sigma^{h}=d \sigma_{f} \otimes D_{f \rightarrow h}$ in terms of independent fragmentation functions already observed in hadronic collisions at Fermilab and at SPS

Second endpoint boosts the string along the direction of the beam-remnant (beam-drag effect), leading to an asymmetry in the rapidity distribution of D^{+} / D^{-}mesons

$$
A=\frac{\sigma_{D^{-}}-\sigma_{D^{+}}}{\sigma_{D^{-}}+\sigma_{D^{+}}}
$$

New results at 5.02 TeV : D-meson v_{2} and v_{3} in $\mathrm{Pb}-\mathrm{Pb}$

The study of higher flow-harmonics in AA collisions requires a modeling of initial-state event-by-event fluctuations. We perform a Glauber-MC sampling of the initial conditions, each one characterized by a complex eccentricity

$$
s(\boldsymbol{x})=\frac{K}{2 \pi \sigma^{2}} \sum_{i=1}^{N_{\text {coll }}} \exp \left[-\frac{\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)^{2}}{2 \sigma^{2}}\right] \quad \longrightarrow \quad \epsilon_{m} e^{i m \psi_{m}} \equiv-\frac{\left\{r^{2} e^{i m \phi}\right\}}{\left\{r^{2}\right\}}
$$

with orientation and modulus given by

$$
\begin{aligned}
\Psi_{m} & =\frac{1}{m} \operatorname{atan} 2\left(-\left\{r^{2} \sin (m \phi)\right\},-\left\{r^{2} \cos (m \phi)\right\}\right) \\
\epsilon_{m} & =\frac{\sqrt{\left\{r_{\perp}^{2} \cos (m \phi)\right\}^{2}+\left\{r_{\perp}^{2} \sin (m \phi)\right\}^{2}}}{\left\{r_{\perp}^{2}\right\}}=-\frac{\left\{r^{2} \cos \left[m\left(\phi-\Psi_{m}\right)\right]\right\}}{\left\{r^{2}\right\}}
\end{aligned}
$$

Exploiting the fact that, on an event-by-event basis, for $m=2,3 v_{m} \sim \epsilon_{m}$ we consider an average background obtained summing all the events of a given centrality class, each one rotated by its event-plane angle ψ_{m}, depending on the harmonics one is considering.

New results at 5.02 TeV: D-meson v_{2} and v_{3} in $\mathrm{Pb}-\mathrm{Pb}$

Transport calculations carried out in JHEP 1802 (2018) 043, with hydro background calculated via the ECHO-QGP code (EPJC 73 (2013) 2524)

New results at 5.02 TeV: D-meson v_{2} and v_{3} in $\mathrm{Pb}-\mathrm{Pb}$

Transport calculations carried out in JHEP 1802 (2018) 043, with hydro background calculated via the ECHO-QGP code (EPJC 73 (2013) 2524)

New results at 5.02 TeV: D-meson v_{2} and v_{3} in $\mathrm{Pb}-\mathrm{Pb}$

Transport calculations carried out in JHEP 1802 (2018) 043, with hydro background calculated via the ECHO-QGP code (EPJC 73 (2013) 2524)

New results at 5.02 TeV: D-meson v_{2} and v_{3} in $\mathrm{Pb}-\mathrm{Pb}$

Transport calculations carried out in JHEP 1802 (2018) 043, with hydro background calculated via the ECHO-QGP code (EPJC 73 (2013) 2524)

New results at 5.02 TeV : D-meson v_{2} and v_{3} in $\mathrm{Pb}-\mathrm{Pb}$

Transport calculations carried out in JHEP 1802 (2018) 043, with hydro background calculated via the ECHO-QGP code (EPJC 73 (2013) 2524)

- CMS (and ALICE) data for D-meson $v_{2,3}$ satisfactory described;
- Recombination with light quarks provides a relevant contribution.

Time development of azimuthal anisotropies

- Most of the HQ's decouple quite late ($\sim 50 \%$ after $8 \mathrm{fm} / \mathrm{c}$);

Time development of azimuthal anisotropies

- Most of the HQ's decouple quite late ($\sim 50 \%$ after $8 \mathrm{fm} / \mathrm{c}$);
- Final elliptic flow from a complex interplay of contributions from the whole medium history;

Time development of azimuthal anisotropies

- Most of the HQ's decouple quite late ($\sim 50 \%$ after $8 \mathrm{fm} / \mathrm{c}$);
- Final elliptic flow from a complex interplay of contributions from the whole medium history;
- HQ v_{2} correlated with the one of the fluid cell;

Time development of azimuthal anisotropies

- Most of the HQ's decouple quite late ($\sim 50 \%$ after $8 \mathrm{fm} / \mathrm{c}$);
- Final elliptic flow from a complex interplay of contributions from the whole medium history;
- HQ v_{2} correlated with the one of the fluid cell;
- supplementary information from p_{T}-differential analysis;

Eccentricity fluctuations

Events within the same centrality class can be characterized by very different eccentricities. Eccentricity distributions of different classes display a significant overlap, in particular for ϵ_{3}, which is less correlated with the impact parameter. It is interesting to study in each class the $0-20 \%$ high- ϵ_{n} and the $0-60 \%$ low $-\epsilon_{n}$ events. We want to extend this program, usually carried out for soft-hadrons (ALICE Coll. PRC 93 (2016), 034916), to HF particles.

Eccentricity fluctuations

Events within the same centrality class can be characterized by very different eccentricities. Eccentricity distributions of different classes display a significant overlap, in particular for ϵ_{3}, which is less correlated with the impact parameter. It is interesting to study in each class the $0-20 \%$ high $-\epsilon_{n}$ and the $0-60 \%$ low $-\epsilon_{n}$ events. We want to extend this program, usually carried out for soft-hadrons (ALICE Coll. PRC 93 (2016), 034916), to HF particles.

Eccentricity fluctuations

Events within the same centrality class can be characterized by very different eccentricities. Eccentricity distributions of different classes display a significant overlap, in particular for ϵ_{3}, which is less correlated with the impact parameter. It is interesting to study in each class the $0-20 \%$ high $-\epsilon_{n}$ and the $0-60 \%$ low $-\epsilon_{n}$ events. We want to extend this program, usually carried out for soft-hadrons (ALICE Coll. PRC 93 (2016), 034916), to HF particles.

ESE and HF observables: nuclear modification factor

The nuclear modification factor of charmed hadrons, within a given centrality class, displays only a mild dependence on the initial eccentricity. This holds for both choices of transport coefficients.

ESE and HF observables: nuclear modification factor

The nuclear modification factor of charmed hadrons, within a given centrality class, displays only a mild dependence on the initial eccentricity. This holds for both choices of transport coefficients.

ESE and HF observables: nuclear modification factor

The nuclear modification factor of charmed hadrons, within a given centrality class, displays only a mild dependence on the initial eccentricity. This holds for both choices of transport coefficients.

ESE and HF observables: nuclear modification factor

The nuclear modification factor of charmed hadrons, within a given centrality class, displays only a mild dependence on the initial eccentricity. This holds for both choices of transport coefficients.

ESE and HF observables: elliptic flow

Charmed hadron v_{2} is strongly affected by eccentricity fluctuations within a given centrality class. The size of the effect looks independent from the choice of the transport coefficients.

ESE and HF observables: elliptic flow

Charmed hadron v_{2} is strongly affected by eccentricity fluctuations within a given centrality class. The size of the effect looks independent from the choice of the transport coefficients.

ESE and HF observables: elliptic flow

Charmed hadron v_{2} is strongly affected by eccentricity fluctuations within a given centrality class. The size of the effect looks independent from the choice of the transport coefficients.

ESE and HF observables: elliptic flow

Charmed hadron v_{2} is strongly affected by eccentricity fluctuations within a given centrality class. The size of the effect looks independent from the choice of the transport coefficients.

Selecting events at fixed eccentricity

One can adopt a different strategy and select events of a given eccentricity (e.g. $0.3<\epsilon_{2}<0.4$) in the different centrality classes.

- the R_{AA} depends only on the centrality and not on ϵ_{2}

Selecting events at fixed eccentricity

One can adopt a different strategy and select events of a given eccentricity (e.g. $\left.0.3<\epsilon_{2}<0.4\right)$ in the different centrality classes.

- the R_{AA} depends only on the centrality and not on ϵ_{2}
- the HF hadron v_{2} looks similar (at low- p_{T}) for events with the same ϵ_{2} belonging to different centrality classes. The scaling does not hold for quarks (drag depends on medium density!). Hadronization 'plays an important

Selecting events at fixed eccentricity

One can adopt a different strategy and select events of a given eccentricity (e.g. $\left.0.3<\epsilon_{2}<0.4\right)$ in the different centrality classes.

- the R_{AA} depends only on the centrality and not on ϵ_{2}
- the HF hadron v_{2} looks similar (at low- p_{T}) for events with the same ϵ_{2} belonging to different centrality classes. The scaling does not hold for quarks (drag depends on medium density!). Hadronization 'plays an important role

ESE and HF observables: elliptic flow

First results obtained also for the triangular flow

- Dependence of the HQ v/ on the transport coefficients;
- Strong dependence on ϵ_{3} fluctuations;
- HF v_{3} increased by in-medium hadronization (recombination)

ESE and HF observables: elliptic flow

First results obtained also for the triangular flow

- Dependence of the HQ v/3 on the transport coefficients;
- Strong dependence on ϵ_{3} fluctuations;
- HF v_{3} increased by in-medium hadronization (recombination)

Conclusions

- With initial conditions accounting for event-by-event fluctuations it is possible to provide a consistent description of even and odd harmonics of HF azimuthal anisotropies (v_{2} and v_{3});
- The way is open to perform the study of HF observables within an Event-Shape-Engineering analysis: the potential to extract information on the initial conditions and on the transport coefficients of the medium has to be explored;
- More results going to become available soon.

[^0]: ${ }^{1}$ Approach adopted by Catania, Nantes, Frankfurt, LBL.a.groups

[^1]: ${ }^{2}$ B. Svetitsky, PRD 37, 2484 (1988)

[^2]: ²B. Svetitsky, PRD 37, 2484 (1988)

