

Heavy-flavour hadron decay leptons in Pb-Pb and Xe-Xe collisions at the LHC with ALICE

- \triangleright Electrons at mid-rapidity, |y| < 0.7
- \rightarrow Muons at forward-rapidity, 2.5 < y < 4

Andrea Dubla for the ALICE Collaboration

Physics motivation

→ Charm and beauty quarks are produced in hard scattering processes in the initial stages of the collisions

→ They experience the full evolution of the system
→ sensitive probes of the properties of the Quark-Gluon Plasma

- → Expected to **lose energy** while traversing the medium
- → Collective expansion of the medium
- → Hadronization: fragmentation vs coalescence
- → Cold Nuclear Matter effect: modification of nPDF (shadowing)
 - Need reference measurements in pp and p-Pb collisions

H. Zanoli: Wed 16th, 15:20

Nuclear modification factor

- Production of hard probes (heavy quarks, jets...) in AA collisions is expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)
- Observable: nuclear modification factor

$$R_{\rm AA}(p_{\rm T},y) = \frac{1}{\langle T_{\rm AA} \rangle} \cdot \frac{{\rm d}^2 N_{\rm AA}/{\rm d}p_{\rm T}{\rm d}y}{{\rm d}^2 \sigma_{\rm pp}/{\rm d}p_{\rm T}{\rm d}y} \sim \frac{QCD \text{ medium}}{QCD \text{ vacuum}}$$

- \rightarrow **shadowing** leads to a reduction of the heavy-flavour yield (important at **low** p_T)
- In-medium parton energy loss via radiative (gluon emission) and collisional processes depending on:
 - → colour charge
 - → quark mass (dead cone effect)
 - → path length and medium density

Dokshitzer and Kharzeev, PLB 519 (2001) 199 Wicks, Gyulassy, J.Phys. G35 (2008) 054001

ALICE detector

Heavy-flavour decay electrons in pp collisions

- Testing the centre-of-mass energy dependence down to $p_T = 0.5 \text{ GeV}/c$

→ Large range of collision energy analysed, data consistently at the upper edge of FONLL calculation at all energies
 → Large reduction of systematic uncertainty in the measurements w.r.t. previous publications!

Heavy-flavour decay electrons in pp collisions

- Ratios of cross sections at different energies can be used in order to further test the pQCD FONLL calculation.
 In the ratios, part of the uncertainties cancel out
 - at low p_T may help to set constraints to the gluon PDF → small values of Bjorken-x Eur.Phys.J. C75 (2015) no.12, 610

New R_{AA} measurements in Pb-Pb collisions at 2.76 TeV down to $p_T = 0.5$ GeV/ $c \rightarrow low-p_T$ measurements crucial in all systems to test binary scaling of total charm cross section and possible effect of initial-state effects like nuclear PDF (shadowing) \rightarrow systematic uncertainty largely reduced thanks to the new pp reference at 2.76 TeV

- Data are better described when the nuclear PDFs (EPS09) are included in the model calculation (TAMU, POWLANG and MC@sHQ+EPOS2) in both centrality intervals
- Suppression at intermediate/high p_T is better described by models that include both **radiative** and **collisional energy loss** processes

Q

- POWLANG: Eur.Phys.J. C73 (2013) 2481;

TAMU: Phys.Lett. B735 (2014) 445–450;MC@HQ+EPOS: PRC 89 (2014) 014905;

- New R_{AA} measurements in Pb-Pb collisions at 5.02 TeV down to $p_T = 0.5$ GeV/c

- New R_{AA} measurements in Pb-Pb collisions at 5.02 TeV down to $p_T = 0.5$ GeV/c
- R_{pPb} consistent with unity (PLB 754 (2016) 81) \rightarrow no strong modification of heavy-flavour decay electron spectra in p-Pb collisions relative to pp collisions
- Large suppression at high p_T in Pb-Pb collisions
 - → final-state effect due to heavy-quark in-medium energy loss

- Similar R_{AA} is measured between the two collision energies.
 - \rightarrow interplay between harder p_T spectra and larger energy loss at 5.02 TeV w.r.t 2.76 TeV
 - modulo different charm/beauty fraction

- Similar R_{AA} is measured between the two collision energies.
 - \rightarrow interplay between harder p_T spectra and larger energy loss at 5.02 TeV w.r.t 2.76 TeV
 - modulo different charm/beauty fraction
- Suppression compatible with the one observed for muons from heavy-flavour hadron decay at forward rapidity at the same collision energy

Similar R_{AA} is observed in Xe-Xe and Pb-Pb when compared at similar $< dN/d\eta >$

Similar R_{AA} is observed in Xe-Xe and Pb-Pb when compared at similar $< dN/d\eta > 1$

- Comparison of **Pb-Pb** and **Xe-Xe** collisions at different N_{part} or N_{ch} may add sensitivity to probe the path-length dependence of energy loss
 - → both radiative and collisional processes relevant for heavy-flavour
 - → constraints to model calculations

- New R_{AA} measured down to p_T = 0.2 GeV/c thanks to the low B field used in ALICE during the Xe-Xe data taking!

- Possible future measurement of total charm cross section in heavy-ion collisions
- Data are reproduced by model calculations

Nuclear modification factor in Xe-Xe: rapidity dependence

- New R_{AA} measured down to p_T = 0.2 GeV/c thanks to the low B field used in ALICE during the Xe-Xe data taking!

- Also in this collision system a similar suppression is observed with the muons from heavy-flavour hadron decay at forward rapidity
 - Hint of a smaller suppression in 0-10% with respect to 20-40% centrality

Beauty-decay electrons RAA

Analysis based on the electron impact parameter distribution

JHEP 07 (2017) 052

- First R_{AA} measurement of beauty-decay electrons in 0-20% centrality at 2.76 TeV
- New R_{AA} measurement of beauty-decay electrons in 0-10% centrality at 5.02 TeV
 - $\rightarrow R_{AA}$ < 1 for p_T > 3 GeV/c and compatible with the R_{AA} measured at 2.76 TeV

Beauty-decay electron RAA

- New R_{AA} measurement of beauty-decay electron in 0-10% centrality at 5.02 TeV
 - \rightarrow hint of a smaller suppression for beauty than charm+beauty decay electrons at the same electron p_T
 - → large contribution to the systematic uncertainties from the rescaled pp cross section
 - → agreement within the uncertainties with models implementing mass-dependent energy loss

Conclusion

- \rightarrow Strong suppression of heavy-flavour yields at high $p_T \rightarrow$ final-state effect
 - Described by theoretical models implementing mass-dependent energy loss
- \rightarrow Low p_T measurements highlight the importance of initial-state effects like shadowing
- \rightarrow New R_{AA} measurements in Xe-Xe collisions
 - Similar R_{AA} is observed in Xe-Xe and Pb-Pb when compared at identical $< dN/d\eta >$, scenario consistent with the quadratic path length dependent of medium-induced radiative energy loss
 - R_{AA} down to p_T = 0.2 GeV/c, possible future measurement of total charm cross section in heavy-ion collisions
- \rightarrow Hint for R_{AA} < 1 for beauty decay electrons at p_T > 3 GeV/c
- \rightarrow R_{AA} measurements at different energies and for different collision systems continue to provide constraints to theory model calculations

Poster Session!!!

Don't miss the details in the poster session!

- → [168] Mattia Faggin Measurement of low transverse momentum electrons from heavy-flavour hadron decays in Pb-Pb collisions at 5.02 TeV with ALICE
- → [92] Camila De Conti Production of electrons from beauty-hadron decays in Pb-Pb collisions at 5.02 TeV with ALICE
- → [163] Sebastian Hornung Production of electrons from heavy-flavour hadron decays in proton-proton and Xe-Xe collisions with ALICE at the LHC
- → [111] Martin Voelkl Production and azimuthal anisotropy of beauty decay electrons in Pb-Pb collisions at 2.76 TeV with ALICE

BACKUP

Data Samples

Xe-Xe@5.44 TeV

1 Million of MB events

Pb-Pb@2.76 TeV

Centrality class	$\langle T_{\rm AA} \rangle ~({ m mb}^{-1})$	$N_{ m events}$	$L_{\rm int}~(\mu{\rm b}^{-1})$
0–10%	23.44 ± 0.76	16.4×10^{6}	21.3 ± 0.7
30–50%	3.87 ± 0.18	9.0×10^{6}	5.8 ± 0.2

Pb-Pb@5.02 TeV

Centrality class	$\langle T_{\rm AA} \rangle \; ({\rm mb}^{-1})$	Nevents
0–10%	23.42 ± 0.75	10.4×10^{6}
30-50%	3.82 ± 0.14	20.8×10^{6}
60-80%	0.404 ± 0.017	20.8×10^{6}

Electrons from heavy-flavour hadron decays

- Low- p_T electrons (p_T < 3 GeV/c): PID via TPC dE/dx complemented with TOF and ITS
- High- p_T electrons (p_T > 3 GeV/c): PID using TPC, EMCal

Main background sources:

- v conversions
- $_{-}$ π^{0} and $_{n}$ Dalitz decays

Background subtraction:

- Measured: photonic-electron tagging method (e+e-pairs)
- Calculated: data-tuned background cocktail

Muons from heavy-flavour hadron decays

 $-4 < \eta < -2.5$

Track selection:

- Acceptance and geometrical cuts
- Muon trigger matching:
 reject the hadrons that cross the absorber
- Select tracks pointing back to the vertex:
 Remove tracks from beam-gas interactions

Remaining main background:

- μ from primary π and K decays (subtracted with MC-tuned on π , K spectra measured at mid-rapidity)
- μ from J/ψ/W/Z/γ* decays at high p_T

Model predictions:

- POWLANG: Eur.Phys.J. C73 (2013) 2481;TAMU: Phys.Lett. B735 (2014) 445–450;
- MC@HQ+EPOS: PRC 89 (2014) 014905;
- WHDG: Nucl. Phys. A 872 (2011) 256;
- BAMPS: PLB 717 (2012) 430; arXiv:1310.3597v1[hep-ph];
- UrQMD: arXiv:1211.6912[hep-ph]; J.Phys. Conf. Ser. 426
- (2013) 012032; Cao, Quin, Bass: PRC 88 (2013);
- Vitev:: PRC 80 (2009) 054902;
- Djordjevic: PRL 737 (2014) 298

 R_{AA} measurements at different collision systems and energies, and for different heavy-flavour decay channels start to provide constraints for models

Collectivity: azimuthal anisotropy

- Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy
- In addition, path-length dependent energy loss induces an asymmetry in momentum space
- Observable: elliptic flow v_2 = 2nd Fourier coefficient of the particle azimuthal distribution

$$E\frac{\mathrm{d}^3 N}{\mathrm{d}^3 p} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_{\mathrm{RP}})] \right)$$

Heavy-flavour v_2 measurements probe:

 Low/intermediate p_T: collective motion, degree of thermalization of heavy quarks and dronization mechanism (recombination)

High p_T: path-length dependence of heavy-quark energy loss

Leptons from heavy-flavour hadron decays

HF-decay muons 2.5 < y < 4 PLB 753, (2016) 41

HF-decay electrons |y| < 0.7 JHEP 09 (2016) 028

 v_2 of heavy-flavour decay **electrons** (at mid-rapidity) and **muons** (at forward rapidity) are similar in the different centrality classes. Positive v_2 observed \rightarrow 5.9 σ effect for 2 < p_T < 2.5 GeV/c in 20-40% centrality class for the heavy-flavour decay electrons.

Hint for an increase of v_2 from central to semi-central collisions as observed for D mesons Suggests collective motion of low- p_T charm quarks in the expanding fireball

Beauty-decay electron RAA

- Analysis based on the electron impact parameter distribution.
- First R_{AA} measurement of beauty-decay electron at 2.76 TeV in the 0-20% centrality interval:
 - $\rightarrow R_{AA} < 1 \text{ for } p_T > 3 \text{ GeV/}c$
 - → consistent with the picture of mass-dependent radiative and collisional energy loss

p_T-differential cross section

ALICE pp $\sqrt{s}=2.76$ TeV, $\mu^{\pm}\leftarrow$ HF in 2.5<y<4 μ[±]←HF, FONLL — - μ[±]←charm, FONLL μ[±]←beauty, FONLL ිප් ප්ර 1.9% normalization uncertainty not included data/FONLL ALICE, PRL 109 (2012) 112301 p_t (GeV/c) ALI-PUB-16725 ALICE pp, $\sqrt{s} = 2.76 \text{ TeV}$

(ALICE) Phys. Rev. D86 (2012) 112007

Heavy-flavour p₋-differential cross sections well described by pQCD calculations at both energies (7 and 2.76 TeV)

Similar R_{AA} is observed in Xe-Xe and Pb-Pb when compared at similar $< dN/d\eta > 1$

- Scenario consistent with the quadratic path length dependence of medium-induced radiative energy loss $\langle \Delta E \rangle \propto \varepsilon \cdot L^2$
- Pb-Pb and Xe-Xe systems give excellent control over the path length
 → stringent constraints to all model calculations.