

Nuclear modification factor and **Flow** of charm and bottom quarks in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by the PHENIX Experiment.

Takashi HACHIYA

Nara Women's University & RIKEN BNL Research Center for the PHENIX collaboration

hachiya@cc.nara-wu.ac.jp

Why heavy flavor, bottom & charm?

- Mainly created at early stage of the collision
 - Production can be calculated by pQCD

Mc~1.3GeV T_{QGP} ~400MeV Mb~4.5GeV Λ_{QCD} ~200MeV

- Passing through QGP
 - Suffer energy loss and flow effects p_T and angular distributions can be modified in QGP

Modification of Heavy flavor is good tool to study property of QGP

Heavy flavor suppression in HI Collisions

- PHENIX observed in electron measurements
 - $R_{AA}(b) \sim R_{AA}(c) < 1$ at high p_T
 - $R_{AA}(b) > R_{AA}(c)$ at low p_T
- Consistent with the expected mass ordering
 - $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$
 - Radiative loss @ high p_T
 - Collisional loss @ low p_T
- To understand the suppressions of bottom and charm, need systematic study
 - Centrality dependence
 - Azimuthal anisotropy

Bottom measurement is key to understand the QGP properties

- $|y| < 0.35, \phi^2 \cdot \pi/2$
- Electrons, γ, hadrons
 - DC, PC, RICH, EMCAL, TOF

- 1.2 $^{\sim}$ |y|<2.2, $\phi^{\sim}2\cdot\pi/2$
- Muons, Hadrons

PHENIX Detector

PHENIX Silicon Vertex Detector, VTX & FVTX

Precise tracking for charm and bottom separation

2

rons

MCAL,TOF

 $2 \cdot \pi/2$

$R_{AA}(b\rightarrow e) \& R_{AA}(c\rightarrow e) \text{ in } Au+Au 200GeV$

- In 0-10%, bottom and charm are more clearly separated
- Charm is more suppressed than MB
- Bottom is similar

Bottom and charm with large statistics

- Recorded large statistics of Au+Au 200
 GeV in 2014
 - 17 B events = 4 times larger
- The dataset is available for the analysis.
- Charm and bottom separation using the DCA decomposition in progress
- Dataset enables heavy flavor v₂^{HF} measurement

Heavy Flavor electron v₂^{HF}

- Heavy flavor electron v₂^{HF} with (F)VTX is consistent with published measurement
 - Smaller statistical and systematic uncertainty
 - VTX and FVTX improve the v₂ measurement significantly
 - VTX reduces the photonic BG
 - FVTX provides twice higher RP resolution

v₂ for c- and b- enriched DCA range

Peak region: Charm enriched

Tail region: Bottom enriched

HFe $\cdot v_2^{HF}$

•
$$v_2^{inc} = b \cdot v_2^b(b \rightarrow e) + c \cdot v_2^c(c \rightarrow e) + bg_0 \cdot v_2^{bg}$$

- Look at v₂ from these DCA range
 - If v_2^b is small, $v_2(b\text{-enriched}) < v_2(c\text{-enriched})$

DCA ranges:

Peak: c-enriched: |DCA|<200um

Tail: b-enriched: 300 | DCA | < 1000 um

HF v₂ for c- and b-enriched DCA ranges

- Clear difference for c- and b- enriched DCA ranges
 - Photonic and hadron background subtracted
 - No b-fraction information is used
- Suggests $v_2^b(b\rightarrow e) < v_2^c(c\rightarrow e)$ at low p_T

$v_2^c(c \rightarrow e)$ and $v_2^b(b \rightarrow e)$ in Au+Au 200GeV

- $v_2(c \rightarrow e)$ is positive and smaller than charged hadron v_2
- First $b \rightarrow e v_2(b \rightarrow e)$ measurement at RHIC
 - consistent with zero within large uncertainty
 - Likely smaller than $v_2(c\rightarrow e)$

$v_2^b(b \rightarrow e)$ comparison with LHC

Consistent with LHC results

Heavy flavor muon v₂^{HF} in small system

- First measurement at RHIC
- Significant non-zero v₂ in d+Au collisions !!
 - 99.93% (98.61%) confidence level at backward (forward)

Future prospects

- b->e and c->e separation in progress for Au+Au 200GeV with full statistics
 - 20 B events in Run2014 = 4 times larger than the preliminary
 - HF yields are consistent w/ published result
 - 16 B events more from run2016
- New p+p reference in run2015 coming soon
- p+A in 2015 to study CNM effect
- New b-fraction in Au+Au improves v_2 (b \rightarrow e) and v_2 (c \rightarrow e)
- B \rightarrow J/ ψ in Au+Au with 16x more statistics than in Cu+Au
- Heavy flavor in small system

Detailed bottom and charm measurements in progress to study mass dependence of QGP effects

Summary

- Open heavy flavor yield and v₂ measurements in progress
- PHENIX measures heavy flavor e v_2 , charm and bottom electron v_2 in min.bias Au+Au collisions at 200 GeV
- HF v₂^{HF} for charm- & bottom- enriched DCA range shows
 - $v_2(b\rightarrow e)$ is smaller than $v_2(c\rightarrow e)$ at low p_T
- Separated charm and bottom electron $v_2(c\rightarrow e)$
 - $v_2^c(c \rightarrow e)$ increase smoothly with p_T
 - $v_2^b(b\rightarrow e)$ is consistent with zero within statistical and systematic uncertainty
 - Likely smaller than $v_2^c(c \rightarrow e)$

Outlook

- New bottom and charm results are coming soon for both Mid- and FW rapidity in Au+Au
 and p+p 200GeV, others
 - Not only charm & bottom yield but flow with large statistics

Backup

PHENIX Silicon Vertex Detector, VTX & FVTX

VTX installed in 2011

|y| < 1.2, $\phi \sim 2\pi$: 4 layers (2 pixels + 2 strips)

FVTX installed in 2012

1.2 < |y| < 2.2, $\phi = 2\pi : 4$ layers

- Purpose
 - Measure DCA for charm-bottom separation
 - Proportional to decay length
 - B⁰: 455 μm, D⁰: 123 μm
 - VTX : Collision vertex determination
 - FVTX: Event plane :twice higher resolution

Collision vertex

Heavy flavor e yield at Au+Au 200GeV

Inclusive e v₂inc for the c- and b-enriched DCA ranges **PH***ENIX

- Clear difference for c- and b- enriched DCA ranges
- Backgrounds contribute it:
 - Need to be subtracted :

$$v_2^{inc} = b \cdot v_2^b(b \rightarrow e) + c \cdot v_2^c(c \rightarrow e) + bg_0 \cdot v_2^{bg}$$

Extract v_2^c (c \rightarrow e) and v_2^b (b \rightarrow e)

$$v_2^{HF} = \mathbf{b} \cdot v_2^{\mathbf{b}} + \mathbf{c} \cdot v_2^{\mathbf{c}}$$

- 2 HFe v₂^{HF} from c- and b-enriched
- b->e and c->e fractions are determined by the DCA analysis with VTX
 - Unfolding provides yields and DCA shape of b->e and c->e

Unfolding: Bayesian inference

Purpose: extract parent B/C hadron yield

Bayesian inference technique

Input

Hadron yield

Charm

Botto

• MCMC(Markov chain Monte Carlo) sampling

 D_{0}

Primar

vertex

 $B/C \rightarrow e$

av model

• Obtain probability of B/C yield for pT bins

 $P(B|A) = \frac{P(A|B) \cdot P(B)}{}$ Calculation vs Data Likelihood Data:HFe Calc: HFe [Yield, 5DCA] [Yield, 5DCA] Au+Au MB √s_{NN}=200 GeV

Unfolding: Bayesian inference

Purpose: extract parent B/C hadron yield

 $P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}$

- Bayesian inference technique
- MCMC(Markov chain Monte Carlo) sampling
- Obtain probability of B/C yield for pT bins

Bottom electron fraction in 0-10%

- New result in MB is consistent with published measurement
 - 3 time more statistics that the published result

- higher fraction@0-10%
 - Suppression can be different

Model comparisons in 0-10%

Sensitive to relative modification

Djordjevic et al. (0-10%) Phys.Rev.C 90,034910 (2014) D(2 π T)=30, van Hees et al. (0-10%) Eur. Phys. J. C 61,799 (2009) •••• D(2 π T)=6, van Hees et al. (0-10%) """ D(2 π T)=4, van Hees et al. (0-10%) 0.8 0.6 0.4 0.4 0.4 0.4 0-10% central Au+Au, $\sqrt{s_{_{NN}}}$ =200 GeV Data 2004+2014, lyl<0.35 0.2 **PH**^{*}ENIX preliminary $p_{_{\!\scriptscriptstyle T}}^{\mathrm{e}}\left[\mathrm{GeV/c}\right]$

Sensitive to total modification

- Data prefers smaller diffusion parameter(D=4) = strong coupling
- Need smaller uncertainty to distinguish these models
 - These models are consistent with our result though slightly smaller at low pT

Unfold results for 0-10%

- Invariant yields of bottom and charm hadrons
- Unfold charm hadron is in good agreement with direct D measurement by STAR

$B \rightarrow J/\psi R_{AA}$ in Cu+Au at Forward rapidity

- B \rightarrow J/ ψ : No suppression consistent with unity
 - Also consistent with a modest enhancement by EPS09
- Prompt J/ψ : Large suppression
 - breaks up in final state

$$R_{CuAu}^{B \to J/\psi} = \frac{F_{B \to J/\psi}^{CuAu}}{F_{B \to J/\psi}^{pp}} R_{CuAu}^{inc.J/\psi}$$