Mass hierarchy of parton energy loss in heavy-ion collisions

Shanshan Cao
Wayne State University
Mass effects in heavy quark energy loss

- Produced early and probe the full QGP history
- Provide unique opportunity to study mass effects on energy loss

$R_{AA} (b\rightarrow e) > R_{AA} (c\rightarrow e)$ at low p_T

Comparable R_{AA} between light hadron, B and D at high p_T

This motivates a detailed theoretical investigation of the mass hierarchy of parton energy loss, especially its p_T dependence.
Outline

• A linear Boltzmann transport model (LBT) for heavy vs. light parton energy loss in QGP

• A multi-stage approach for heavy quark energy loss

• Effects of jet-induced medium excitation
Part I: A linear Boltzmann transport model

(In collaboration with T. Luo, G.-Y. Qin and X.-N. Wang, PRC 94 and PLB 777)

Boltzmann equation for parton “1” distribution:

\[p_1 \cdot \partial f_1(x_1, p_1) = E_1 C[f_1] \]

The collision term:

Transition rate from \(p_1 \) to \(p_1 - k \)

\[C[f_1] \equiv \int d^3k \begin{bmatrix} w(\vec{p}_1 + \vec{k}, \vec{k}) f_1(\vec{p}_1 + \vec{k}) - w(\vec{p}_1, \vec{k}) f_1(\vec{p}_1) \end{bmatrix} \]

Elastic scattering (2->2 process)

\[w(\vec{p}_1, \vec{k}) \equiv \sum_{2,3,4} w_{12\rightarrow34}(\vec{p}_1, \vec{k}) \]

\[w_{12\rightarrow34}(\vec{p}_1, \vec{k}) = \gamma_2 \int \frac{d^3p_2}{(2\pi)^3} f_2(\vec{p}_2) \begin{bmatrix} 1 \pm f_3(\vec{p}_1 - \vec{k}) \end{bmatrix} \begin{bmatrix} 1 \pm f_4(\vec{p}_2 + \vec{k}) \end{bmatrix} \]

\[\times v_{\text{rel}} d\sigma_{12\rightarrow34}(\vec{p}_1, \vec{p}_2 \rightarrow \vec{p}_1 - \vec{k}, \vec{p}_2 + \vec{k}) \]

Microscopic cross section of 12->34
Inelastic scattering (2->2+n process)

Inelastic scattering rate (average gluon number per Δt):

$$\Gamma_{\text{inel}} = \langle N_g \rangle (E, T, t, \Delta t)/\Delta t = \int dxdk_\perp^2 \frac{dN_g}{dxdk_\perp^2 dt}$$

Medium-induced gluon spectrum

$$\frac{dN_g}{dxdk_\perp^2 dt} = \frac{2\alpha_s C_A P(x)}{\pi k_\perp^4} \hat{q} \left(\frac{k_\perp^2}{k_\perp^2 + x^2 M^2} \right)^4 \sin^2 \left(\frac{t - t_i}{2\tau_f} \right)$$

$\hat{q} : dp_\perp^2/dt$ of quark/gluon due to 2->2 scatterings
Framework overview

(Parton evolution inside the QGP)

• Generation of QGP medium: hydrodynamic model
• Initialization of hard partons: MC-Glauber for position space and pQCD calculation for momentum space (PDF: CTEQ5+EPS09)
• Simulation of parton evolution: the Boltzmann transport model in the local rest frame of the medium
• Hadronization: fragmentation + recombination model

outside the medium (below T_c), converted into hadrons
Heavy vs. light hadron suppression

- $u/d/s$ are slightly more suppressed than c quark, g is significantly more suppressed

- Due to different fragmentation function, π from light quark has similar R_{AA} to D, π from gluon is still more suppressed
Simultaneous description of D and light hadron R_{AA}

- LBT treats heavy and light parton evolution on the same footing and simultaneously describes R_{AA} of D and light flavor hadrons.
- Predictions for the Xe-Xe collisions: Poster by G.-Y. Qin
Part II: Effects of multi-stage evolution

(In collaboration with G.-Y. Qin, C. Shen and A. Majumder, arXiv:1711.09053)

Particles in current transport models are usually on-shell

\[p^2 - m^2 = E^2 - \bar{p}^2 - m^2 = 0 \]

Quantum fluctuation allows particles to be off-shell (virtual)

\[Q^2 = p^2 - m^2 \neq 0 \]

within a finite splitting time

\[\tau_f \sim \gamma \frac{1}{Q} \sim \frac{E}{Q^2} \]

Partons produced in energetic collisions usually start with high \(Q \) and then evolve back to shell after several splittings

Parton evolution at high \(Q \) is usually treated by vacuum showers (Pythia) in transport without considering medium modification

Develop a combined approach that includes medium modification in different stages
A multi-stage approach

Stage 1 \((Q>>M_{\text{HM}})\) – rare scattering multiple emission

- HQ fragmentation function is treated with DGLAP equation

\[
\frac{\partial}{\partial Q^2} D \left(z, E, Q^2 \right) = \frac{\alpha_s}{2\pi} \frac{1}{Q^2} \int_{z}^{1} \frac{dy}{y} P(y) D \left(\frac{z}{y}, E, Q^2 \right)
\]

- Splitting function:

\[
P(y) = P_{\text{vac}}(y) + P_{\text{med}}(y)
\]

\[
P_{\text{med}}(y, k_{\perp}^2) = \frac{2C_A \alpha_s}{\pi k_{\perp}^4} P_{\text{vac}}(y) \int_{t_i}^{t_{\text{max}}} dt \hat{q}(t) \sin^2 \left(\frac{t - t_i}{2\tau_f} \right)
\]

- Input fragmentation function \(D \left(z, E, Q_0^2 \right)\)

Extracted from transport model (in stage 2) – medium-modified fragmentation function at \(Q_0 \sim M_{\text{HM}}\)
A multi-stage approach

Stage 2 ($Q \sim M_{HM}$) – single scattering induced emission

- Transport model (elastic + inelastic processes)
 Inelastic scattering rate

$$\Gamma_{rad}(\zeta^-) = \int dy \int d\ell_{\perp}^2 \frac{dN}{d\ell_{\perp}^2 d\zeta^-}$$

- Medium-induced gluon spectra (contribution from longitudinal drag and diffusion to slowly moving heavy quark)

$$\frac{dN}{dy d\ell_{\perp}^2 d\zeta^-} = \frac{2C_F \alpha_S}{2\pi} \frac{P(y)}{(\ell_{\perp}^2 + y^2 M^2)^2} 2 \sin^2 \left(\frac{\ell_{\perp}^2 + y^2 M^2}{4l^- y(1 - y) \zeta^-} \right)$$

$$\times \left[\hat{q} \left(1 - \frac{y}{2} - \frac{y^2 M^2}{\ell_{\perp}^2} \right) + \hat{e} \frac{y^2 M^2}{l^-} + \hat{e}_2 \frac{y^2 M^2}{2(l^-)^2} \right].$$

- Assume Einstein relation: \(\hat{e} = \hat{e}_2/(2T), \hat{q} = 2\hat{e}_2 \)

- Extract medium-modified \(D(z, E, Q_{0}^2) \) for DGLAP in stage 1

Abir, Kaur, Majumder, PRD 90 (2014) 114026
Abir, Majumder, PRC 94 (2016) 054902
Evolution of b-quark fragmentation function

- vac $Q_0 = 5$ GeV
- vac $Q = 20$ GeV
- med $Q_0 = 5$ GeV
- med $Q = 20$ GeV
- b quark
 - $E = 20$ GeV
 - $Q_0 = 5$ GeV

Evolution of b-quark fragmentation function in medium transport

Vacuum DGLAP

Medium-modified DGLAP
Heavy meson spectra

- Convolute vacuum/medium-modified fragmentation function with c/b initial spectra

- Vacuum fragmentation function $\rightarrow D/B$ spectra consistent with p-p data
Contributions from \hat{e} and \hat{e}_2 terms

- More important to b-quark than c-quark (mass hierarchy)
- Non-negligible at low p_T but diminish at large p_T
- Decrease B meson R_{AA} and narrow the difference between D and B
Part III: Effects of jet-induced medium excitation

(In collaboration with Y. Tachibana, in progress)

- “Linear” Boltzmann: only consider medium modification of jet
- Jet-medium interaction also includes modification of the medium

Medium background

\[(T, u^\nu) \quad \frac{1}{p.u} p^\mu \partial_\mu f = C\]

Hard parton

\[(j^\nu) \quad \partial_\mu T^{\mu \nu} = j^\nu\]

Energy-momentum deposition

- Important effects in jet observables
- e.g. enhancement of soft hadron production in γ-jet [W. Chen, S. Cao, T. Luo, L.-G. Pang, X.-N Wang, PLB 777 (2018) 86-90]
Energy deposition of heavy quarks into QGP

\[p = 2 \text{ GeV} \ c\text{-quark} \ (E = 2.4 \text{ GeV}) \]

\[p = 2 \text{ GeV} \ b\text{-quark} \ (E = 4.7 \text{ GeV}) \]

- Energy deposition from a slowly moving heavy quark can travel faster than the heavy quark affects its own subsequent motion
Summary

• Discussed the mass/flavor hierarchy of parton energy loss from different perspectives

• Presented a linear Boltzmann transport model (LBT) that treats heavy and light parton evolution on the same footing and simultaneously describes the nuclear modification of charm and light hadrons

• Introduced a multi-stage approach of heavy quark energy loss that further narrows down the difference between D and B meson R_{AA}

• Discussed possible mass/velocity dependences of medium response to heavy quark energy loss
Thank you!
MATTER vs. vacuum shower

- Energy loss in MATTER is stronger when Q_0 is smaller.
- Energy loss in MATTER disappears when $Q_0^2 > \hat{Q} \tau_f$ (medium scale).
- $\hat{Q} \tau_f$ increases with the jet energy; MATTER evolution is more important to high energy partons than to low energy ones.
LBT vs. MARTINI at different times

- Parton energy loss in LBT (HT) is weaker than in MARTINI (AMY) at early t, but catches up and becomes stronger when t is large.
- At t around the QGP lifetime, LBT and MARTINI are indistinguishable.
- Need to explore observables beyond R_{AA} to distinguish them.
Flavor hierarchy of parton energy loss

- Consistency between semi-analytical calculation and MC simulation with the assumption of fixed medium T and fixed parton E
- Clear flavor hierarchy within transport model: $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$
Energy deposition of heavy quarks into QGP

5 GeV charm quark

Energy density (GeV/fm3) at $\eta_s = 0$

5 GeV beauty quark

Energy density (GeV/fm3) at $\eta_s = 0$
Elastic vs. Inelastic Energy Loss

Divide scattering probability of jet parton into two regions:
1. Pure elastic scattering without radiated gluons: \(P_{\text{el}}(1 - P_{\text{inel}}) \)
2. Inelastic scattering: \(P_{\text{inel}} \)

Total probability: \(P_{\text{tot}} = P_{\text{el}} + P_{\text{inel}} - P_{\text{el}}P_{\text{inel}} \)

In model calculation:
1. Use \(P_{\text{tot}} \) to determine whether the jet parton scatter with the thermal medium
2. If so, we then determine whether this scattering is pure elastic or inelastic
3. Simulate the 2->2 or 2->2+n process

HQ energy loss due to elastic and inelastic processes are comparable at early time, but is dominated by the inelastic process at large \(t \).
Simultaneous Description of D and π R_{AA} in 5.02 TeV Pb-Pb Collisions

With a delicate treatment of heavy and light parton in-medium evolution and their hadronization, one may provide reasonable description of heavy and light hadron suppression simultaneously.
The extracted \hat{q} from model to data comparison within our LBT framework is consistent with the value constrained by the earlier work by the JET Collaboration [Phys. Rev. C90, 014909 (2014)].
Anisotropic Flow (v_2 and v_3) of D Mesons

- Predictions of v_2 and v_3 are consistent with CMS data at 5.02 TeV.
- Strong v_2 is observed for the full p_T range.
- Strong v_3 is observed at low p_T, but it is consistent with 0 at high p_T.