Measurements of directed and elliptic flow for D⁰ and D⁰ mesons using the STAR detector at RHIC

- ★ Motivation
- **STAR detector**
- ★ Analysis details
- \star Results:
 - D^{0}/\overline{D}^{0} directed (v₁) and ($D^{0}+\overline{D}^{0}$) elliptic flow (v₂)

Summary

STAR KENT STATE.

Subhash Singha Kent State University (for the STAR Collaboration)

Outline

Comparison to light flavor hadrons and model calculations

Directed flow (v₁) for heavy quarks due to EM fields

- The moving spectators can produce enormously large electromagnetic field $(eB \sim 10^{18} \text{ G at RHIC})$
- Due to early production of heavy quarks ($\tau_{CQ} \sim 0.1$ fm/c) positive and negative charm quarks (CQs) can get deflected by the initial EM force
- Model predicts opposite v₁ for charm and anti-charm quarks induced by this initial EM field This induced v₁ depends on the balance between E and B fields The magnitude of such induced v_1 for heavy quarks is much larger than the light quarks

D⁰ and D⁰ v₁ can offer insight into the early time EM fields

Provide constraint for CME related physics

Directed flow (v₁) for heavy quarks from hydro

Drag between the tilted bulk and the HFs

- Heavy quarks are produced according to N_{coll} density: symmetric in rapidity
- At non-zero rapidity, charm quarks production points are shifted from the bulk
- This can induce larger v_1 in charm quarks than light flavors
- Magnitude of charm quark v₁ depends on the drag parameter used in this model

We can probe the longitudinal profile of the initial matter distribution through heavy flavor v_1

(V1-Slope)Charm-Quark >> (V1-Slope)Light-Quark

Charm quarks much more sensitive to the initial tilt than the charged hadrons

 D^{0} (D^{0}) v_{1} can be used to constrain drag coefficients in conjunction with v_{2} and R_{AA}

Directed flow (v₁) for heavy quarks from hydro + EM field

Interplay between the drag by tilted bulk and the EM field

- D meson v₁ greater than the D
- Predicted difference in v_1 is about 10 times smaller than the average v_1

D⁰ reconstruction with HFT

- Pseudorapidity ($|\eta| < 1$)
- Azimuthal coverage $(0,2\pi)$
- Allows topological reconstruction of heavy flavor particles
- Excellent track pointing resolution

D⁰ decay topology:

D⁰ meson

- HFT data from 2014 and 2016 runs
- Total ~ 2 billion events

D⁰ v₁ from event plane method

ZDC-SMD event plane resolution

- The first-order event plane measured using ZDC-SMD ($|\eta| > 6.4$)
- v₁ signal is significant at forward rapidity Better ψ_1 resolution than mid-rapidity detectors
- Large η-gap significantly reduces non-flow contribution

Subhash Singha, Venezia

- $D^0 v_1$ measured using $\phi \psi_1$ method
- Results are corrected for event-plane resolution

V₁ comparison: D⁰ vs. kaon

Subhash Singha, Wenezia

v₁ comparison: D⁰ vs. kaon

Charm v₁-slope > light flavor v₁-slope

Subhash Singha,

v₁ comparison: D⁰ vs. kaon

D^0 and $D^0 v_1$

- First observation of non-zero D⁰ v₁
- Both D⁰ and D⁰ v₁ show a negative slope at mid-rapidity

 $D^0 dv_1/dy = -0.102 \pm 0.030 \pm 0.021$ $\overline{D^0} \, dv_1/dy = -0.061 \pm 0.030 \pm 0.023$

• The model predicts correct sign of v_1 -slope for D⁰ and D⁰ but wrong magnitude

D^o v₁: data vs. hydro + EM

- The model predicts correct sign of v_1 -slope for D⁰ and D⁰ but wrong magnitude
- Our data will help to constrain model parameters (tilt and drag parameters)

Subhash Singha,

D^o v₁: data vs. hydro + EM

Δv_1 : data vs. models

Recent D⁰ elliptic flow (v₂) results from STAR

L Adamczyk et. al. (STAR Collaboration), Phys Rev. Lett. 118, 212301 (2017)

- STAR published D⁰ v₂ from data taken during 2014 run

D⁰ flow magnitude consistent with NCQ scaling in minimum bias and mid-central collisions.

High statistics 2016 run data allow to improve precision of the charm flow measurements at RHIC energy

 The 2016 data also allow us to extend NCQ scaling test to finer centrality bins

Precise D⁰ v₂ measurement can allow:

Quantitative studies of QGP properties (transport coefficients)

D⁰ v₂ comparison to light hadrons

- D⁰ v₂ results from combined data from 2014 and 2016 runs
- D⁰ v₂ measurement extended to 0-10% centrality

• Clear mass ordering for $p_T < 2$ GeV/c in 10-40% centrality

• $D^0 v_2$ for $p_T > 2$ GeV/c in 10-40% centrality follows the mesons

Poster: Yue Liang ld: 124

D⁰ v₂ comparison to light hadrons

- NCQ scaling test with improved precision in D⁰ v₂ measurement
- NCQ-scaled D⁰ v₂ consistent with light hadrons for $(m_T-m_0)/n_q < 2.5$ GeV/c² in 10-40%
- Evidence of charm quarks flowing with the medium

Charm quark may achieve thermal equilibrium

Poster: Yue Liang ld: 124

- $D^0 v_2$ results from combined data using 2014 and 2016 runs
- Improved precision to constrain the models \bullet

D⁰ v₂: data vs. models

Compared Models	x2/NDF	p-value
SUBATECH [1]	17.3/8	0.026
TAMU c quark diff. [2]	12.0/8	0.15
TAMU no c quark diff. [2]	33.7/8	4.5 x10 ⁻⁵
Duke (Bayesian) [3]	8.5/8	0.39
3D viscous hydro [4]	3.7/6	0.71
LBT [5]	13.3/8	0.10
PHSD [6]	8.7/7	0.27
Catania [7]	9.7/8	0.29

[1] **SUBATECH:** *Phys Rev C* 90, 054909 (2014), *Phys Rev C* 92, 014910 (2015)

- [2] **TAMU:** *Phys Rev C* 86, 014903 (2012), *Phys Rev Lett* 110, 112301 (2013)
- [3] **Duke:** Phys Rev C 92, 024907 (2015)
- [4] **3D viscous hydro:** *Phys Rev C* 86, 024911 (2012)
- [5] **LBT:** *Phys Rev C* 94, 014909 (2016)
- [6] **PHSD:** Phys ReV 90, 051901 (2014), Phys ReV 90, 051901 (2014)

[7] Catania: Phys ReV 96, 044905 (2017)

Poster: Yue Liang ld: 124

Directed flow

- First evidence of non-zero directed flow for heavy flavor
- Both D⁰ and D⁰ show negative v₁-slope near mid-rapidity
- Heavy flavor $v_1 > \text{light flavor } v_1$ Data can be used to probe initial matter distribution
- Current precision is not sufficient to draw conclusion on magnetic field induced charge separation of heavy quarks

Elliptic flow

- Improved precision of D⁰ v₂ results with combined 2014 and 2016 data
- D⁰ v₂ result suggests charm quarks achieve a thermal equilibrium with the medium
- Precise D⁰ v₂ measurements can further constrain model calculations

Summary

Backup slides

Directed flow from magnetic field

Gursoy et.al. Phys. Rev. C 89, 054905 (2014)

- The moving spectators can produce enormously large **B** field (eB ~10¹⁸ G)
- There could be two competing effects
- <u>Hall effect:</u> $\mathbf{F} = q \mathbf{v} \times \mathbf{B}$

Lorentz force directed along -ve X-direction in +ve rapidity and vice-versa

• Faraday effect: $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

Time dependent **B** field generates a large **E** field Induced Faraday current will oppose the drift due to **B** field

Subhash Singha,

D^{0} and D^{0} v_{1} with kaons

quadratic function: $p_0y + p_1y^3$

Light flavor vs. heavy flavor v₁

L Adamczyk et. al. (STAR Collaboration),

D^{0} and D^{0} v₁ with recent model

Das et. al., Phys Lett B 768, 260 (2017)

D^{0} and D^{0} v₁ with recent models

D⁰ v₁ from hydro model

Bulk: Hydro HF: Langevin HF hadronization via fragmentation

Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)

