

Production of open charm and beauty states in *p*Pb collisions with LHCb

Jiayin Sun (Tsinghua University)

On behalf of the LHCb Collaboration

Outline

- Open heavy flavor measurements in pPb collisions
- The LHCb detector
- LHCb *p*Pb datasets
- Prompt D^0 and Λ_c^+ production in pPb collisions at 5 TeV
- Upcoming open beauty and charm measurements
- Conclusion

Open heavy flavor in PbPb collisions

arXiv:1708.04962

- Heavy flavor states are sensitive probes to study the properties of the QGP created in AA collision.
 - Produced in the early stage of the collisions
 - Significant D^0 quenching at higher p_T observed in central PbPb collisions
 - Large Λ_c^+/D^0 ratio measured in mid-central AuAu collisions
 - *b*-hadron measurements becoming available at LHC
- Open heavy flavor in pA collisions provides baseline measurements to disentangle cold nuclear matter effects from effects of hot and dense medium.

Transverse Momentum $p_{_{\rm T}}$ (GeV/c)

arXiv:1704.04353

Open heavy flavor in pPb collisions

- LHCb well suited to *p*Pb measurements:
 - Heavy flavor measurement down to $p_T = 0$
 - Separation of prompt and *b*-decay components
- Cold Nuclear Matter effects
 - Initial state:
 - Modification of nuclear PDF
 - Color Glass Condensate
 - Multiple scattering or radiation of partons crossing the nucleus
 - Final state

arXiv:1802.05927

LHCb detector

- A single arm forward spectrometer designed for the study of particles containing *c* or *b* quark
- Acceptance: $2 < \eta < 5$
- Vertex detector
 - IP resolution $\sim 20 \mu m$
- Tracking system

•
$$\frac{\Delta p}{p} = 0.5\% - 1\%$$

(5-200 GeV/c)

- RICH
 - $K/\pi/p$ separation
- Electromagnetic
 - + hadronic
 - Calorimeters
- Muon systems

LHCP

LHCb pPb datasets

- Rapidity Coverage
 - *y**: rapidity in nucleon-nucleon cms
 - $y_{\rm cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$
- $\sqrt{s_{NN}} = 5.02 \text{ TeV } (2013)$
 - $pPb (1.06 \text{ nb}^{-1}) + Pbp (0.52 \text{ nb}^{-1})$

- $\sqrt{s_{NN}} = 8.16 \text{ TeV } (2016)$
 - $pPb (13.6 \text{ nb}^{-1}) + Pbp (21.8 \text{ nb}^{-1})$

• Reconstructed through decay channel:

$$D^0 \rightarrow K^-\pi^+$$

- Inclusive D^0 mesons from fitting invariant mass dist.:
 - Signal: Crystal Ball+Gaussian
 - Background: linear
- Prompt D⁰ fraction extracted from fitting impact parameter dist.:
 - Prompt: simulation
 - D^0 -from-b: simulation
 - Background: sideband in data

JHEP 10 (2017) 090

Prompt Λ_c^+ measurement in pPb at 5 TeV

Reconstructed through decay channel

$$\Lambda_c^+ \to p K^- \pi^+$$

- Inclusive Λ_c^+ baryons from fitting invariant mass dist.:
 - Signal: Gaussian
 - Background: linear

Prompt Λ_c^+ fraction extracted from fitting impact parameter dist.:

- Prompt: simulation
- Λ_c^+ -from-b: simulation
- Background: sideband in data

Prompt D^0 double-differential cross-section in pPb

$$\sigma_{forward} = 230.6 \pm 0.5 \pm 13.0 \text{ mb}$$

$$\sigma_{backward} = 252.7 \pm 1.0 \pm 20.0 \text{ mb}$$

JHEP 10 (2017) 090

Prompt Λ_c^+ double-differential cross-section in $p{\rm Pb}$

$$\sigma_{forward} = 32.1 \pm 1.0 \pm 4.1 \text{ mb}$$

$$\sigma_{backward} = 27.7 \pm 1.5 \pm 4.5 \text{ mb}$$

Prompt *D*⁰ at 5 TeV forward-backward production ratio

• $R_{\rm FB}$ does not need results from pp collisions.

- $R_{\rm FB} = \frac{\sigma(+|y^*|, p_{\rm T})}{\sigma(-|y^*|, p_{\rm T})}$
- Compared to Helac-Onia calculations incorporating different nPDFs
 - Model parameterisation constrained by existing LHC pp cross-section measurements
- Consistent with nPDF predictions within uncertainty
- Data show smaller uncertainties than nPDF calculations

JHEP 10 (2017) 090

Eur. Phys. J. C77 (2017) 1

Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

Prompt Λ_c^+ at 5 TeV forward-backward production ratio

$$R_{\rm FB} = \frac{\sigma(+|y^*|, p_{\rm T})}{\sigma(-|y^*|, p_{\rm T})}$$

- $R_{\rm FB}$ does not need results from pp collisions.
- Compared to Helac-Onia calculations incorporating different nPDFs
 - Model parameterisation constrained by LHC pp cross-section measurements
- Consistent with nPDF predictions within uncertainty
- Data uncertainties comparable to nPDF calculations

Prompt D^0 at 5 TeV nuclear modification factor in pPb

JHEP 10 (2003) 046

Eur. Phys. J. C77 (2017) 1

Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{d\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/dx}{d\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/dx}, A=208$$

- pp reference directly measured by LHCb
- R_{pPb} suppressed at forward rapidity
 - slight increase with increasing $p_{\rm T}$
- R_{pPb} closer to 1 at backward rapidity

- Measurements consistent with models with nPDF, CGC
- Data has smaller uncertainties than theory

Prompt D^0 at 5 TeV nuclear modification factor in pPb

JHEP 10 (2003) 046

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{d\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/dx}{d\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/dx}, A=208$$

- pp reference directly measured by LHCb
- forward
 - significant suppression
- backward
 - closer to 1
 - hint of enhancement at large rapidity
- Measurements consistent with models with nPDF, CGC
- Data has smaller uncertainties than theory

Charmed baryon/meson production ratio

$$R_{\Lambda_c^+/D^0}$$
 at 5 TeV

$$R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_{\rm T})}{\sigma_{D^0}(y^*, p_{\rm T})}$$

- Sensitive to charm hadronisation mechanisms
- Model based on measured pp cross-section
- nPDF effects mostly cancel
 - EPS09LO & EPS09NLO similar
 - nCTEQ15 slightly lower.
- Slight increase with increasing $p_{\rm T}$
- Forward:
 - Consistent at lower p_T
 - Below theories at higher $p_{\rm T}$
- Backward:
 - Consistent for all p_T

Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5 TeV

$$R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_{\rm T})}{\sigma_{D^0}(y^*, p_{\rm T})}$$

- Sensitive to charm hadronisation mechanisms
- Model based on measured pp cross-section
- nPDF effects mostly cancel
 - EPS09LO & EPS09NLO similar
 - nCTEQ15 slightly lower
- Flat across y^*
- Consistent with theories for all y*

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238 LHCb-PAPER-2018-021 in preparation

Ongoing open heavy flavor measurements at LHCb

- LHCb participated in the 8 TeV pPb data taking during 2016.
- Recorded luminosity in total $\sim 31 nb^{-1}$ (20 times more than 2013)
- Increased charm & beauty cross-sections at higher energy
- Measurements of beauty hadrons in *p*Pb (upcoming)
- Precision measurements of charmed hadrons in *p*Pb (ongoing)

A high multiplicity pPb event seen by LHCb in 2016

http://lhcb-public.web.cern.ch/lhcb-public/

Open beauty measurements in pPb 8 TeV

- Upcoming results on fully reconstructed b hadrons:
 - B^+ , Λ_b^0 cross-sections in pPb
 - $R_{\rm FB}$ for B^+ , Λ_b^0
 - baryon-meson ratio $R_{\Lambda_h^0/B^+}$
 - R_{pPb} for B^+ , Λ_b^0

Open charm measurements in pPb 8 TeV

- Precision measurements of charmed hadrons in *p*Pb
- Accuracy improvement in $R_{\Lambda_c^+/D^0}$
- Measurements as functions of multiplicity
- Analyses ongoing

Conclusions

- Cross-sections of prompt D^0 and Λ_c^+ in $p{\rm Pb}$ collisions at 5 TeV measured by LHCb
 - Nuclear modification factor of D^0 in pPb collisions directly measured
 - Significant D^0 suppression in the forward rapidity
 - more precise than theory
 - $R_{\rm FB}$ measured for D^0 and Λ_c^+ , results consistent with theoretical calculations
 - D^0 more precise than theory
 - Λ_c^+ uncertainties comparable to nPDF
 - Charmed baryon-to-meson ratio $R_{\Lambda_c^+/D^0}$ measured
 - Consistent with model except high p_T in forward rapidity
- 8 TeV pPb data with high statistics enable exciting new measurements of open heavy flavor in cold nuclear matter
 - Upcoming results on open beauty states
 - Precision measurements of charmed hadrons ongoing

backup

Prompt D^0 differential cross-section in pPb

JHEP 10 (2017) 090

- Data consistent with nPDF predictions
- Theoretical calculation with Helac-Onia:
 - Fit to existing LHC *pp* cross-section measurement
 - Incorporate nPDF
- nCTEQ15 under predicts cross-section at lowest p_T
- Data more precise than nPDFs

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238