Production of open charm and beauty states in pPb collisions with LHCb

Jiayin Sun (Tsinghua University)
On behalf of the LHCb Collaboration
May 16th 2018
Outline

• Open heavy flavor measurements in pPb collisions
• The LHCb detector
• LHCb pPb datasets
• Prompt D^0 and Λ_c^+ production in pPb collisions at 5 TeV
• Upcoming open beauty and charm measurements
• Conclusion
Open heavy flavor in PbPb collisions

- Heavy flavor states are sensitive probes to study the properties of the QGP created in AA collision.
 - Produced in the early stage of the collisions
 - Significant D^0 quenching at higher p_T observed in central PbPb collisions
 - Large Λ_c^+/D^0 ratio measured in mid-central AuAu collisions
 - b-hadron measurements becoming available at LHC

- Open heavy flavor in pA collisions provides baseline measurements to disentangle cold nuclear matter effects from effects of hot and dense medium.
Open heavy flavor in pPb collisions

• LHCb well suited to pPb measurements:
 • Heavy flavor measurement down to $p_T = 0$
 • Separation of prompt and b-decay components

• Cold Nuclear Matter effects
 • Initial state:
 • Modification of nuclear PDF
 • Color Glass Condensate
 • Multiple scattering or radiation of partons crossing the nucleus
 • Final state

Shadowing

Anti-shadowing

arXiv:1802.05927
LHCb detector

- A single arm forward spectrometer designed for the study of particles containing c or b quark
- Acceptance: $2 < \eta < 5$
- Vertex detector
 - IP resolution $\sim 20 \mu m$
- Tracking system
 - $\frac{\Delta p}{p} = 0.5\% - 1\%$ (5-200 GeV/c)
- RICH
 - $K/\pi/p$ separation
- Electromagnetic + hadronic Calorimeters
- Muon systems
LHCb pPb datasets

- Rapidity Coverage
 - y^*: rapidity in nucleon-nucleon cms
 - $\gamma_{\text{cms}} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$

- $\sqrt{s_{\text{NN}}} = 5.02$ TeV (2013)
 - pPb (1.06 nb$^{-1}$) + Pbp (0.52 nb$^{-1}$)

- $\sqrt{s_{\text{NN}}} = 8.16$ TeV (2016)
 - pPb (13.6 nb$^{-1}$) + Pbp (21.8 nb$^{-1}$)
Prompt D^0 measurement in pPb at 5 TeV

- Reconstructed through decay channel: $D^0 \rightarrow K^- \pi^+$

- Inclusive D^0 mesons from fitting invariant mass dist.:
 - Signal: Crystal Ball+Gaussian
 - Background: linear

- Prompt D^0 fraction extracted from fitting impact parameter dist.:
 - Prompt: simulation
 - D^0-from-b: simulation
 - Background: sideband in data

JHEP 10 (2017) 090
Prompt Λ_c^+ measurement in pPb at 5 TeV

- Reconstructed through decay channel $\Lambda_c^+ \rightarrow pK^-\pi^+$
- Inclusive Λ_c^+ baryons from fitting invariant mass dist.:
 - Signal: Gaussian
 - Background: linear

Prompt Λ_c^+ fraction extracted from fitting impact parameter dist.:
- Prompt: simulation
- Λ_c^+-from-b: simulation
- Background: sideband in data

LHCb-PAPER-2018-021 in preparation
Prompt D^0
double-differential cross-section in $p\text{Pb}$

\begin{align*}
\sqrt{s_{\text{NN}}} = 5 \text{ TeV} \\
\text{LHCb}
\end{align*}

Forward:
\begin{align*}
0 < p_T < 10 \text{ GeV/c} \\
1.5 < y^* < 4.0
\end{align*}

\[\sigma_{\text{forward}} = 230.6 \pm 0.5 \pm 13.0 \text{ mb} \]

\begin{align*}
\sqrt{s_{\text{NN}}} = 5 \text{ TeV} \\
\text{LHCb}
\end{align*}

Backward:
\begin{align*}
0 < p_T < 10 \text{ GeV/c} \\
-5.0 < y^* < -2.5
\end{align*}

\[\sigma_{\text{backward}} = 252.7 \pm 1.0 \pm 20.0 \text{ mb} \]
Prompt Λ_c^+
double-differential cross-section in pPb

\[\frac{d^2\sigma}{dp_T dy^*} \] [mb/(GeV/c²)]

(a) LHCb preliminary pPb $\sqrt{s_{NN}}=5$ TeV
Forward:
2 < p_T < 10 GeV/c
1.5 < y^* < 4.0

\[\sigma_{\text{forward}} = 32.1 \pm 1.0 \pm 4.1 \text{ mb} \]

(b) LHCb preliminary pPb $\sqrt{s_{NN}}=5$ TeV
Backward:
2 < p_T < 10 GeV/c
-4.5 < y^* < -2.5

\[\sigma_{\text{backward}} = 27.7 \pm 1.5 \pm 4.5 \text{ mb} \]
Prompt D^0 at 5 TeV forward-backward production ratio

- R_{FB} does not need results from pp collisions.
- Compared to Helac-Onia calculations incorporating different nPDFs
 - Model parameterisation constrained by existing LHC pp cross-section measurements
- Consistent with nPDF predictions within uncertainty
- Data show smaller uncertainties than nPDF calculations

$$R_{FB} = \frac{\sigma(+|y^*|, p_T)}{\sigma(-|y^*|, p_T)}$$

JHEP 10 (2017) 090
Prompt Λ_c^+ at 5 TeV forward-backward production ratio

$R_{FB} = \frac{\sigma(+|y^*|, p_T)}{\sigma(-|y^*|, p_T)}$

- R_{FB} does not need results from pp collisions.
- Compared to Helac-Onia calculations incorporating different nPDFs
 - Model parameterisation constrained by LHC pp cross-section measurements
- Consistent with nPDF predictions within uncertainty
- Data uncertainties comparable to nPDF calculations

LHCb-PAPER-2018-021 in preparation

5/16/2018
Prompt D^0 at 5 TeV nuclear modification factor in pPb

$$R_{p\text{Pb}}(\gamma^*, p_T) = \frac{1}{A} \times \frac{d\sigma_{p\text{Pb}}(\gamma^*, p_T, \sqrt{s_{\text{NN}}})/dx}{d\sigma_{pp}(\gamma^*, p_T, \sqrt{s_{\text{NN}}})/dx}, \quad A=208$$

- pp reference directly measured by LHCb
- $R_{p\text{Pb}}$ suppressed at forward rapidity
 - slight increase with increasing p_T
- $R_{p\text{Pb}}$ closer to 1 at backward rapidity
- Measurements consistent with models with nPDF, CGC
- Data has smaller uncertainties than theory
Prompt D^0 at 5 TeV nuclear modification factor in pPb

$$R_{p\text{Pb}}(y^*, p_T) = \frac{1}{A} \times \frac{d\sigma_{p\text{Pb}}(y^*, p_T, \sqrt{s_{\text{NN}}})/dx}{d\sigma_{pp}(y^*, p_T, \sqrt{s_{\text{NN}}})/dx}, \ A=208$$

- pp reference directly measured by LHCb
- forward
 - significant suppression
- backward
 - closer to 1
 - hint of enhancement at large rapidity
- Measurements consistent with models with nPDF, CGC
- Data has smaller uncertainties than theory
Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5 TeV

$$R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*,p_T)}{\sigma_{D^0}(y^*,p_T)}$$

- Sensitive to charm hadronisation mechanisms
- Model based on measured pp cross-section
- nPDF effects mostly cancel
 - EPS09LO & EPS09NLO similar
 - nCTEQ15 slightly lower.
- Slight increase with increasing p_T

- **Forward:**
 - Consistent at lower p_T
 - Below theories at higher p_T

- **Backward:**
 - Consistent for all p_T
Charmed baryon/meson production ratio
\(R_{\Lambda_c^+ / D^0} \) at 5 TeV

\[
R_{\Lambda_c^+ / D^0} = \frac{\sigma_{\Lambda_c^+}(y^*,p_T)}{\sigma_{D^0}(y^*,p_T)}
\]

- Sensitive to charm hadronisation mechanisms
- Model based on measured \(pp \) cross-section
- nPDF effects mostly cancel
 - EPS09LO & EPS09NLO similar
 - nCTEQ15 slightly lower
- Flat across \(y^* \)

- **Consistent with theories for all \(y^* \)**

LHCb-PAPER-2018-021 in preparation
Ongoing open heavy flavor measurements at LHCb

- LHCb participated in the 8 TeV pPb data taking during 2016.
- Recorded luminosity in total $\sim 31nb^{-1}$ (20 times more than 2013)
- Increased charm & beauty cross-sections at higher energy
- Measurements of beauty hadrons in pPb (upcoming)
- Precision measurements of charmed hadrons in pPb (ongoing)
Open beauty measurements in $p\mathrm{Pb}$ 8 TeV

- Upcoming results on fully reconstructed b hadrons:
 - B^+, Λ_b^0 cross-sections in $p\mathrm{Pb}$
 - R_{FB} for B^+, Λ_b^0
 - baryon-meson ratio $R_{\Lambda_b^0/B^+}$
 - $R_{p\mathrm{Pb}}$ for B^+, Λ_b^0
Open charm measurements in pPb 8 TeV

- Precision measurements of charmed hadrons in pPb
- Accuracy improvement in $R_{\Lambda_c^+/D^0}$
- Measurements as functions of multiplicity
- Analyses ongoing
Conclusions

- Cross-sections of prompt D^0 and Λ_c^+ in pPb collisions at 5 TeV measured by LHCb
 - Nuclear modification factor of D^0 in pPb collisions directly measured
 - Significant D^0 suppression in the forward rapidity
 - More precise than theory
 - R_{FB} measured for D^0 and Λ_c^+, results consistent with theoretical calculations
 - D^0 more precise than theory
 - Λ_c^+ uncertainties comparable to nPDF
 - Charmed baryon-to-meson ratio $R_{\Lambda_c^+/D^0}$ measured
 - Consistent with model except high p_T in forward rapidity

- 8 TeV pPb data with high statistics enable exciting new measurements of open heavy flavor in cold nuclear matter
 - Upcoming results on open beauty states
 - Precision measurements of charmed hadrons ongoing
backup
Prompt D^0 differential cross-section in $p\text{Pb}$

- Data consistent with nPDF predictions
- Theoretical calculation with Helac-Onia:
 - Fit to existing LHC pp cross-section measurement
 - Incorporate nPDF
- nCTEQ15 under predicts cross-section at lowest p_T
- Data more precise than nPDFs