Search for the critical point by the NA61/SHINE experiment

Evgeny Andronov for the NA61/SHINE Collaboration

Saint Petersburg State University, LUHEP

13 -19 May, 2018

Lido, Venice, Italy

Motivation of the NA61/SHINE strong interaction programme

- Search for the critical point
- Study of properties of the onset of deconfinement

Motivation of the NA61/SHINE strong interaction programme

- Search for the critical point
- Study of properties of the onset of deconfinement

Comprehensive scan in A+A collisions with light and intermediate mass nuclei in beam momentum range $13A-150A~{\rm GeV}/c$

Motivation of the NA61/SHINE strong interaction programme

- Search for the critical point
- Study of properties of the onset of deconfinement

Comprehensive scan in A+A collisions with light and intermediate mass nuclei in beam momentum range $13A-150A~{\rm GeV}/c$

Data taking schedule:

taken data (green) approved for 2018 (red) proposed extension (gray)

NA61/SHINE detector

NA61/SHINE in virtual reality: http://shine3d.web.cern.ch/shine3d/

- Located at CERN SPS
- Large acceptance hadron spectrometer - coverage of the full forward hemisphere, down to p_T = 0 GeV/c
- Performs measurements on hadron production in h+p, h+A, A+A at 13A -150(8)A GeV/c
- Event selection in A+A collisions by measurements of forward energy with Projectile Spectator Detector
- Recent upgrades: vertex detector (open charm measurements), FTPC-1/2/3

Intensive fluctuation measure

A ratio of two extensive quantities ($\sim W$ - number of sources (strings, wounded nucleons) or $\sim V$ - volume in statistical models) is an intensive measure. E.g. for charged particles multiplicity N we have:

$$\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$

 \bullet Independent of W for $\omega[W]=0$ in the Wounded Nucleon Model

- \bullet $\omega[N] = 1$ for the Poisson distribution
- $\omega[N] = 0$ in the absence of fluctuations
- should be sensitive to critical fluctuations (e.g. in classical van der Waals gas within GCE formulation)
- \bullet CP signal may be shadowed by volume fluctuations $\omega[W]$

Vovchenko, et al., JPA 48: 305001

$\omega[{\it N}]$: system size dependence

 $\omega[N]$ were measured for inelastic p+p interactions and forward energy selected $^7\text{Be}+^9\text{Be}$ and $^{40}\text{Ar}+^{45}\text{Sc}$ collisions with particles produced in strong and EM processes within the NA61/SHINE acceptance.

p+p - inelastic Be+Be - 1% most 'central' events Ar+Sc -0.2% most 'central' events Seryakov, KnE Energy and Physics 3 1: 170 Statistical uncertainties were calculated by the sub-sample method.

Systematic uncertainties due to experimental biases are under investigation (estimated to be smaller than 5%).

Mean number of wounded nucleons $\langle W \rangle$ estimated using the GLISSANDO model.

Broniowski, Rybczynski, PRC 81: 064909

$\omega[N]$: system size dependence

Werner et al PRC 74:044902

Rapid change of $\omega[N]$ at $\langle W \rangle \approx 20$ is observed! (not described by EPOS1.99) Tough challenge for interpretations:

p+p - inelastic
Be+Be - 1% most 'central' events
Ar+Sc -0.2% most 'central' events
Seryakov, KnE Energy and Physics 3 1: 170

In WNM:
$$\omega[N] = \omega[n] + \frac{\langle N \rangle}{\langle W \rangle} \omega[W]$$

n – multiplicity from a wounded nucleon

$$\omega[\mathbf{n}] = \omega[\mathbf{N}]_{pp} \Rightarrow \omega[\mathbf{N}]_{AA} \ge \omega[\mathbf{N}]_{pp}$$

In disagreement with data

NB: in WQuarkM it is possible to have $\omega[N]_{AA} \leq \omega[N]_{pp}$ if fluctuations in a number of wounded quarks are suppressed in A+A

Bialas, et al., Acta Phys. Pol. B 8, 585

$\omega[N]$: system size dependence

Werner et al PRC 74:044902

Rapid change of $\omega[N]$ at $\langle W \rangle \approx 20$ is observed! (not described by EPOS1.99) Tough challenge for interpretations:

p+p - inelastic Be+Be - 1% most 'central' events Ar+Sc -0.2% most 'central' events Seryakov, KnE Energy and Physics 3 1: 170

In WNM:
$$\omega[N] = \omega[n] + \frac{\langle N \rangle}{\langle W \rangle} \omega[W]$$

n – multiplicity from a wounded nucleon

$$\omega[{\it n}] = \omega[{\it N}]_{\it pp} \Rightarrow \omega[{\it N}]_{\it AA} \geq \omega[{\it N}]_{\it pp}$$
 In disagreement with data

NB: in WQuarkM it is possible to have $\omega[N]_{AA} \leq \omega[N]_{pp}$ if fluctuations in a number of wounded quarks are suppressed in A+A Bialas, et al., Acta Phys. Pol. B 8, 585

In statistical models [IB-GCE]: $\omega[{\it N}]=1$

In disagreement with data

Conservation laws (IB-CE) make $\omega[{\it N}] < 1$

Begun, et al., PRC **76**, 024902 Begun, et al., PRC **78**, 024904

$\omega[N]$: system size dependence

Rapid change of $\omega[N]$ at $\langle W \rangle \approx 20$ is observed!

Percolation:

- collisions of light nuclei non-overlapping particle emitting clusters
- collisions of heavy ions large, single cluster

Baym, Physica **96**A: 131 Celik, Karsch, Satz PLB **97**: 128 Armesto, *et al.*, PRL **77**: 3736

AdS/CFT correspondence:

- Gravity formation of a black hole horizon takes place when critical values of model parameters are reached
- QCD only starting from a sufficiently large nuclear mass number the formation of the trapping surface in A+A collisions is possible
- ⇒ Onset of Fireball

Shuryak, Prog.Part.Nucl.Phys. **62**: 48 Lin, Shuryak, PRD **79**: 124015

$\omega[{\it N}]$: energy vs. system size dependence

Preliminary results were obtained for five collision energies. Significant difference between small systems and Ar+Sc is present at all collision energies.

Seryakov, KnE Energy and Physics 3 1: 170

 $\omega[N]$ for p+p and Be+Be are close to each other at collision energies

$$\omega$$
[N] < 1 for Ar+Sc

$\omega[{\it N}]$: energy vs. system size dependence

Preliminary results were obtained for five collision energies. Significant difference between small systems and Ar+Sc is present at all collision energies.

Seryakov, KnE Energy and Physics 3 1: 170

 $\omega[N]$ for p+p and Be+Be are close to each other at collision energies

$$\omega$$
[*N*] < 1 for Ar+Sc

 $\omega[N] \approx 0.9$ for Pb+Pb measured by NA49 (in slightly smaller acceptance and wider centrality class) NA49, PRC 78 034914

No signs that can be clearly associated with the critical point

Strongly intensive fluctuation measures

Baseline of search for critical behaviour: quantities with trivial properties in the reference models (e.g. WNM or IB-GCE)

$$\begin{split} \Delta[P_T,N] &= \frac{1}{\omega[\rho_T]\langle N\rangle} \left(\langle N\rangle \omega[P_T] - \langle P_T\rangle \omega[N] \right) \\ \Sigma[P_T,N] &= \frac{1}{\omega[\rho_T]\langle N\rangle} \left(\langle N\rangle \omega[P_T] + \langle P_T\rangle \omega[N] - 2cov(P_T,N) \right) \\ \text{where } P_T &= \sum_{i=1}^N p_{Ti} \end{split}$$

N - multiplicity of charged hadrons in an experimental acceptance $\omega[p_T]$ - scaled variance of inclusive p_T distribution

- ullet Independent of $\langle W
 angle$ and $\omega[W]$ in the Wounded Nucleon Model
- $\Delta[P_T, N] = \Sigma[P_T, N] = 1$ for the independent particle production model
- $\Delta[P_T,N]=\Sigma[P_T,N]=1$ for the ideal Boltzmann gas in both Grand Canonical Ensemble and Canonical Ensemble formulations
- $\Delta[P_T, N] = \Sigma[P_T, N] = 0$ in the absence of fluctuations

Gorenstein, Gazdzicki, PRC 84:014904

Gorenstein, et al., PRC 88 2:024907

Strongly intensive fluctuation measuresSensitivity to critical point

Analysis of strongly intensive fluctuation measures is expected to give more insight into the critical point location

 $\Sigma[E^*,N]$ and $\Delta[E^*,N]$ for nucleon system with van der Waals EOS in GCE formulation in vicinity of critical point, E^* – excitation energy

Δ , $\Sigma[P_T, N]$: energy vs. system size scan Inelastic p+p vs. 0-5% 7 Be+ 9 Be vs. 0-5% 40 Ar+ 45 Sc

Data shows that $\Delta[P_{\mathcal{T}},N]<1 \\ \Sigma[P_{\mathcal{T}},N]>1$

Explanations?

- Bose-Einstein statistics of pion gas
- negative P_T/N vs. N correlation leads to the same inequalities.

Gorenstein, Grebieszkow, PRC **89**:034903

No prominent structures which could be related to the critical point are visible.

Andronov, Acta Phys. Pol. B Proc. Suppl. 10 449

E. Andronov (for the NA61/SHINE Collaboration)

Analysis extension: choice of phase-space

 $^{7}\text{Be} + ^{9}\text{Be}$ at 150A GeV/c

Sketch of psedorapidity (lab) spectrum of charged hadrons with proposed windows

9 intervals considered:

from
$$\eta^{\mathit{lab}} \in (\text{4.6}; \text{5.2})$$
 up to $\eta^{\mathit{lab}} \in (\text{3}; \text{5.2})$

The lower cut: poor azimuthal angle acceptance and stronger electron contamination at backward rapidities. The upper cut: to reduce effects of spectators.

Rapidity width dependence studies will allow to probe different baryochemical potentials $(\frac{\overline{p}}{p}=e^{-(2\mu_B)/T})$ - extension of the phase diagram scan!

Rapidity spectra of p and \overline{p} in inelastic p+p interactions at SPS energies

 $rac{ar{
ho}}{
ho}$ changes significantly with rapidity

NA61, EPJC 77 10: 671

$\Delta, \Sigma[P_T, N]$: pseudorapidity width dependence

 $\Delta[P_T, N] < 1$ and is monotonically decreasing with the width of the pseudorapidity interval

Disagreement with the non-trivial dependence from the EPOS1.99 model

 $\Sigma[P_T, N] > 1$ and is monotonically increasing with the width of the pseudorapidity interval

 $\Sigma[P_T, N]$ approaches 1 for small width of the pseudorapidity interval (close to Poisson limit)

Andronov, KnE Energy and Physics 3 1:226

Intermittency analysis as a CP searches tool

Second factorial moments:

$$F_2(M) \equiv rac{\sum_m \langle n_m(n_m-1)
angle}{\sum_m \langle n_m
angle^2}$$

Second order phase transition \rightarrow self-similarity \rightarrow correlations in configuration space that can be observed by studying correlations in momentum space

We search for local, power-law fluctuations of baryon density by calculating the scaling of 2nd factorial moments $F_2(M)$ with cell size \Leftrightarrow cells M in transverse momentum space (intermittency) Diakonos et al., PoS (CPOD2006) 010

After subtracting non-critical background moments, the correlator $\Delta F_2(M) = F_2^{data}(M) - F_2^{mix}(M)$ should scale according to a power-law for $M \gg 1$

$$\Delta F_2(M) \sim \left(M^2\right)^{\phi_2}$$
, $\phi_2 = \frac{5}{6}$

Antoniou et al., PRL **97** 032002 Wosiek; Bialas, Peschanski; Satz ...

Intermittency analysis results

NA49: no intermittency signal in C+C and Pb+Pb collisions

Evidence for intermittency in Si+Si that is consistent with 1% of critically correlated protons in CMC model NA49, EPJC 75 587

Intermittency analysis results

NA49: no intermittency signal in C+C and Pb+Pb collisions

Evidence for intermittency in Si+Si that is consistent with 1% of critically correlated protons in CMC model NA49, EPJC 75 587

NA61: no intermittency effect in the first analysis of Be+Be collisions

Observation is consistent with only 0.3% of critically correlated protons in MC simulations

Ar+Sc, Xe+La and Pb+Pb coming soon

Conclusions

- NA61/SHINE conducts search for the critical point of strongly interacting matter by means of analysis of fluctuations, namely, multiplicity, $[P_T, N]$, intermittency and others
- ullet Results on system size vs. energy dependence of N and $[P_T,N]$ fluctuations for particles produced in strong and EM processes within the NA61/SHINE acceptance were reported **no indications** of the critical point of strongly interacting matter so far

ullet Intriguing system size dependence of $\omega[N]$ could be interpreted as a signal of new phenomena – onset of fireball

Conclusions

- Pseudorapidity dependence of $[P_T, N]$ fluctuations for forward energy selected $^7\text{Be}+^9\text{Be}$ collisions at 150A~GeV/c $\Delta[P_T, N]$ pseudorapidity dependence is in disagreement with EPOS1.99
- Intermittency analysis of self-similar (power-law) fluctuations of the net baryon density in transverse momentum space for forward energy selected $^7 \text{Be} + ^9 \text{Be}$ collisions at 150A GeV/c indicates an upper limit of $\sim 0.3\%$ critical protons
- We are working hard to extract new results for Ar+Sc, Xe+La and Pb+Pb collisions stay tuned!

17/18

This work is supported by the Russian Science Foundation under grant 17-72-20045

evgeny.andronov@cern.ch

Thank You!

Back-up

NA61/SHINE theory meetings

- NA61/SHINE regularly organize theory seminars with invited speakers
- Among them: K. Werner, G. Torrieri, W. Broniowski, M. Strikman and many other respected theorists
- You can find us on facebook

NA61/SHINE Collaboration

- Azerbaijan
 - National Nuclear Research Center,
 Raku
- Bulgaria
 - University of Sofia, Sofia
- Croatia
 - ► IRB. Zagreb
- France
 - LPNHE, Paris
- Germany
 - ► KIT Karleruhe
 - Fachhochschule Frankfurt, Frankfurt
 University of Frankfurt, Frankfurt
- Greece
 - University of Athens, Athens
- Hungary
 - Wigner RCP, Budapest

- Japan
 - KEK Tsukuba, Tsukuba
- Norway
 - University of Bergen, Bergen
- Poland
 - UJK, Kielce
 - NCBJ, Warsaw
 - University of Warsaw, Warsaw
 WUT Warsaw
 - Jagiellonian University, Kraków
 - ► IFJ PAN, Kraków ► AGH Kraków
 - AGH, Kraków
 University of Silesia. Katowice
 - University of Silesia, Natowice
 University of Wrocław. Wrocław
- Russia
 - INR Moscow, Moscow
 - JINR Dubna, Dubna
 SPBU, St.Petersburg
 - SPBU, St.Petersburg
 MEPhl. Moscow
- \sim 150 physicists from \sim 30 institutes

- Serbia
 - University of Belgrade, Belgrade
- Switzerland
 - ETH Zürich, Zürich
 University of Bern, Bern
 - University of Geneva, Geneva
- USA
 - University of Colorado Boulder,
 - Boulder ► LANL. Los Alamos
 - University of Pittsburgh, Pittsburgh
 - FNAL, Batavia
 - University of Hawaii, Manoa

NA61/SHINE in 2021-2024

- Detector upgrade: 1 kHz readout, TOF, PSD, Large Acceptance Vertex Detector during Long Shutdown in 2019-2020
- High statistics beam momentum scan with Pb+Pb collisions for precise measurements of open charm and multi-strange huperon production
- In parallel, NA61/SHINE performs measurements for long-baseline neutrino facilities at J-PARC and Fermilab; rich neutrino program is planned to be continued after 2020

Higher moments of net electric charge

Relation with the correlation length

N: e-by-e net charge

Mean:
$$M = \langle N \rangle$$

St. dev.: $\sigma = \sqrt{\langle (N - \langle N \rangle)^2 \rangle}$ $\langle (N - \langle N \rangle)^2 \rangle \approx \xi^2$
Skewness: $S = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3}$ $\langle (N - \langle N \rangle)^4 \rangle \approx \xi^{4.5}$

Kurtosis:
$$k = \frac{\sigma^3}{\sigma^4} - 3$$
 $\langle (N - \langle N \rangle)^4 \rangle \approx \xi^7$

Volume independent combinations of the various moments:

$$\omega[N] = \frac{\sigma^2}{M} = \frac{\chi^{(2)}}{\chi^{(1)}}, S\sigma = \frac{\chi^{(3)}}{\chi^{(2)}}, k\sigma^2 = \frac{\chi^{(4)}}{\chi^{(2)}}$$

The signature of non-monotonicity of these observables is expected if there is a nearby critical point in QCD phase transition.

Athanasiou et al., PRD82 (2010) 074008, Stephanov, PRL 107, 052301(2011), Karsch et al., PLB 695, 136 (2011).

Fluctuations of net-charge in inelastic p+p interactions

 $p_T < 1.5$ GeV/c, NA61/SHINE acceptance

- No non-monotonic behavior suggesting CP
- ► EPOS model describes data on net-charge fluctuations
- Results do not agree with independent particle production (Skellam), difference may come from multi-charged particles and quantum statistics

P. Braun-Munzinger et al., Nucl. Phys. A880 48-64 (2012)

Centrality selection

One needs to choose set of modules with dominating contribution of spectators and minimal contribution from the produced particles.

The proposed selection is data-driven and is based on correlations between energy and track multiplicity in TPC acceptance - negative correlation implies dominance of spectators in specific module.

Sketch of energy in the PSD modules and multiplicity correlations for $^7\text{Be} + ^9\text{Be}$ collisions at 19A~GeV/c

Centrality selection

Due to the differences in magnetic field and PSD position for various energies, different set of modules is chosen to calculate E_F .

Unexpectedly, for the same collision energy but for different colliding systems same modules show different behaviour.

Sketch of energy in the PSD modules and multiplicity correlations for $^7\text{Be}+^9\text{Be}$ and $^{40}\text{Ar}+^{45}\text{Sc}$ collisions at 19A GeV/c

Centrality selection

One needs to choose set of modules with dominating contribution of spectators and minimal contribution from the produced particles.

The proposed selection is data-driven and is based on correlations between energy and track multiplicity in TPC acceptance – negative correlation implies dominance of spectators in specific module.

$\Delta[P_T, N]$: pseudorapidity width dependence $^7\text{Be} + ^9\text{Be}$ at 150A GeV/c

To estimate magnitude of experimental biases differences between pure and reconstructed Monte Carlo simulations were studied

This difference was estimated to be less than 5% for all data points

EPOS1.99 - Werner, et al., PRC 74:044902

Corrections are not performed

$\Sigma[P_T, N]$: pseudorapidity width dependence $^7\text{Be} + ^9\text{Be}$ at 150A GeV/c

To estimate magnitude of experimental biases differences between pure and reconstructed Monte Carlo simulations were studied

This difference was estimated to be less than 5% for all data points

Corrections are not performed

$\Sigma[N_F, N_B]$: pseudorapidity separation dependence 7 Be+ 9 Be at 150A GeV/c

To estimate magnitude of experimental biases differences between pure and reconstructed Monte Carlo simulations were studied

This difference was estimated to be less than 5% for all data points

Corrections are not performed

Analysis details

- In order to select properly measured central events one uses the following event selection criteria:
 - good beam quality
 - no off-time beam particles
 - good main vertex fit
 - centrality selected by forward energy (in simulations selection is based on energy of all particles in the kinematic region corresponding to the selected modules)
- In order to select particles produced in strong and EM processes from the primary vertex one uses the following track selection criteria:
 - sufficient number of points inside TPCs
 - track trajectory points to interaction point
 - no electrons/positrons
 - $p_T < 1.5 \text{ GeV}/c$
 - NA61/SHINE acceptance map
 - $0 < y_{\pi}^* < y_{beam}$ (due to poor azimuthal angle acceptance and stronger electron contamination at backward rapidities)

Examples of uncorrected N vs. P_T distributions

 40 Ar+ 45 Sc at 150*A* GeV/*c*, 0 – 5%

N, P_T and $P_{T,2} = \sum_{i=1}^{N} p_{Ti}^2$ are measured for each event.

 $P_{T,2}$ is needed to calculate the scaled variance of the inclusive p_T distribution $\omega[p_T] = rac{\overline{p_T^2} - \overline{p_T}^2}{\overline{p_T}}$ using only event quantities.

Corrections

Werner, et al., PRC 74:044902

- MC used for corrections: EPOS1.99 model (version CRMC 1.5.3), GEANT3.21. The simulated data were analysed within the NA61/SHINE acceptance.
- Corrections for losses due to event and track selections, trigger biases, detector inefficiencies, secondary interactions and feed-down from weak decays for ⁴⁰Ar+⁴⁵Sc were performed on the level of the first and second moments of measured observables.
- ▶ Correction factors for $\langle N \rangle$, $\langle N^2 \rangle$, $\langle P_T \rangle$, $\langle P_T^2 \rangle$, $\langle N \cdot P_T \rangle$ and $\langle P_{T,2} \rangle$ were calculated as ratios of the corresponding moments for pure to reconstructed MC for positively, negatively and all charged hadrons, separately.

Note on errors

Statistical uncertainties were calculated by dividing the data sets into 30 sub-samples. The statistical error is taken as the standard $i \pm i j i \pm i j$ deviation of the sub-sample results divided by $\sqrt{30}$. They are typically smaller than a marker size.

The EPOS1.99 model overestimates $\Delta[P_T, N]$.

The EPOS1.99 model results are close to 1 - the independent particle production model prediction.

Comparison with PbPb results from NA49

To compare results of p_T fluctuations, NA49 cuts were applied to NA61/SHINE data.

In NA49:

- because of high density of tracks, analysis was limited to forward-rapidity region (1.1 $< y_{\pi} <$ 2.6)
- ullet to exclude elastically scattered or diffractively produced protons, analysis was limited in proton rapidity ($y_p < y_{beam} 0.5$)
- $0.005 < p_T < 1.5 \text{ GeV}/c$
- common azimuthal acceptance for all energies NA49, PRC 92 no.4:044905

$\Delta, \Sigma[P_T, N]$: energy dependence

⁴⁰Ar+⁴⁵Sc vs. Pb+Pb (NA49 acceptance)

Results for ⁴⁰Ar+⁴⁵Sc collisions are very close to Pb+Pb. No prominent structures which could be related to the CP are visible.

 $\Delta[P_T, N] < 1$ and $\Sigma[P_T, N] \ge 1$ for both systems.

NA49, PRC 92 no.4:044905 37

No prominent structures which could be related to the CP are visible. $\Delta[P_T, N]$ is more sensitive to centrality selection than $\Sigma[P_T, N]$.

NA49, PRC 92 no.4:044905 38/18

 $\Delta, \Sigma[P_T, N]$: centrality dependence 40 Ar+ 45 Sc. 30A GeV/c

→ 30A GeV/c 30A GeV/c, EPOS1.99

Centrality classes from 0-1% to 0-10%

 $\Sigma[P_T,N]$ is less centrality dependent than $\Delta[P_T,N]$ both in data and in the EPOS1.99 model.

Centrality dependence

Figure 5: (Color online) The UrQMD results for the centrality dependence of $\omega[N_-]$ (squares), $\Delta[P_T,N_-]$ (circles), and $\Sigma[P_T,N_-]$ (triangles) in Pb+Pb collisions at $E_{lab}=20$ A GeV. A centrality selection is done with a restriction on the impact parameter b. (a): The full 4π detector acceptance. (b): Only particles with center of mass rapidity in the interval $1 < y_\pi < 2$ are accepted (pion mass was assumed for all particles). Open symbols correspond to the case when 10% of particles was randomly rejected.

Gorenstein, Grebieszkow, PRC 89:034903

Corrections

Corrections for contamination from off-target interactions for ⁴⁰Ar+⁴⁵Sc were not applied, but with applied vertex position selection they are expected to be less than 1%.

Non-target interactions

In order to correct the data for non-target interactions, NA61/SHINE acquires data of both target-inserted and target-removed collisions. Then, in the analysis procedure, non-target interactions are subtracted.

Example of z position distribution of the fitted vertex for Be+Be at 150 GeV/c:

Multiplicity fluctuations: strongly intensive quantity

 $\omega[N]$ is an <u>intensive</u> measure – independent of $\langle W \rangle$ in WNM Quantities that do not depend on $\langle W \rangle$ and $\omega[W]$ are strongly intensive

For N and $E_P = E_{beam} - E_F$ one can introduce

$$\Omega[N, E_P] = \omega[N] - \frac{cov(N, E_P)}{\langle E_P \rangle}$$

In WNM:

$$\omega[N] = \omega[n] + \langle n \rangle \omega[W]$$

$$\Omega[N, E_P] = \omega[n] - \frac{cov(n, e_P)}{\langle e_P \rangle}$$

n and e_P are N and E_P for a fixed volume

For narrow centrality interval $\Omega[N, E_P] \to \omega[n]$. If $\omega[N] \to \Omega[N, E_P]$ in data, that would mean that volume fluctuations in $\omega[N]$ are suppressed and $\omega[N] \approx \omega[n]$

Gorenstein, Gazdzicki, PRC 84:014904 Poberezhnyuk *et al.*, Acta Phys.Polon. B 47: 2055

$\omega[N]$ and $\Omega[N, E_P]$: centrality dependence $^7\mathrm{Be} + ^9\mathrm{Be}$ collisions at $75A~\mathrm{GeV}/c$

 $\Omega[N, E_P]$ almost does not depend on centrality - strongly intensive!

 $\Omega[N,E_P]$ and $\omega[N]$ converges to a common limit for very central events

Is this common limit $\omega[n]$?

Unwanted fluctuations

Critical Monte Carlo model

- Simplified version of CMC* code:
 - Only protons produced
 - One cluster per event, produced by random Lévy walk:

$$\tilde{d}_F^{(B,2)} = 1/3 \Rightarrow \phi_2 = 5/6$$

- Lower / upper bounds of Lévy walks p_{min,max} plugged in.
- Cluster center exponential in p_T, slope adjusted by T_c parameter.
- Poissonian proton multiplicity distribution.

In	Input parameters									
	Parameter	$p_{\min}\left(MeV\right)$	p _{max} (MeV)	$\lambda_{Poisson}$	T_c (MeV)					
	Value	0.1 o 1	800 → 1200	$\langle p \rangle_{non-empty}$	163					

^{* [}Antoniou, Diakonos, Kapoyannis and Kousouris, Phys. Rev. Lett. 97, 032002 (2006).]

Critical Monte Carlo model for Be+Be collisions

- Collision parameters:
 - $^{7}Be \text{ (beam)} + ^{9}Be \text{ (target)}$
 - 2 Beam energy: 150*A GeV* (target rest frame) $\Leftrightarrow \sqrt{s_{NN}} = 16.8 \ GeV$

$^7Be + ^9Be$ NA61 data – proton p_T statistics

Centrality	#events	$\langle p angle_{ p_T \leq 1.5}$ Non-empty	$\ket{p}_{\ket{p_T} \leq 1.5} \; extit{GeV}, \ket{y_{CM}} \leq 0.75 \ ext{on-empty} \;\;\;\; ext{With empty}$	
10%	166,215	1.48 ± 0.74	0.82 ± 0.92	0.38 - 0.49

CMC simulation parameters

Parameter	$p_{min}\left(MeV\right)$	$p_{max}(MeV)$	$\lambda_{Poisson}$	T_c (MeV)
Value	0.85	1200	0.76	163

ullet $\langle p \rangle$ in mid-rapidity remains low, except for very central collisions

Intermittency analysis results

Evidence for intermittency in Si+Si that is consistent with 1% of critically correlated protons in CMC model NA49, EPJC 75 587

NA61: no intermittency effect in the first analysis of Be+Be collisions

Observation is consistent with only 0.3% of critically correlated protons in MC simulations

Ar+Sc, Xe+La and Pb+Pb coming soon