Hydrodynamics for QCD critical point

M. Stephanov

with Y. Yin (MIT), 1712.10305

Critical point between the QGP and hadron gas phases?

Critical point between the QGP and hadron gas phases?

Lattice QCD at $\mu_B \lesssim 2T$ – a crossover.

C.P. is ubiquitous in models (NJL, RM, Holog., Strong coupl. LQCD, \dots)

Essentially two approaches to discovering the QCD critical point.

Each with its own challenges.

Lattice simulations. Sign problem.

Heavy-ion collisions. Non-equilibrium.

"intriguing hint" (2015 LRPNS)

Non-equilibrium physics is essential near the critical point.

The challenge taken on by

Magnitude of fluctuation observables and ξ

• Divergent magnitude (κ_2) and non-gaussianity $(\kappa_{3,4})$ are due to divergent correlation length ξ :

$$\kappa_n \sim \xi^{\mathrm{power}(n)}$$

Magnitude of fluctuation observables and ξ

● Divergent magnitude (κ_2) and non-gaussianity $(\kappa_{3,4})$ are due to divergent correlation length ξ :

$$\kappa_n \sim \xi^{\text{power}(n)}$$

■ Why is ξ finite in heavy-ion collisions? Infinite ξ needs infinite time – critical slowing down. Expansion time τ finite ⇒

$$\xi_{
m max} \sim au^{1/z}$$
 ($z pprox 3$ – universal)

Therefore, the magnitude of fluctuation signals is determined by *non-equilibrium* physics.

Magnitude of fluctuation observables and ξ

• Divergent magnitude (κ_2) and non-gaussianity $(\kappa_{3,4})$ are due to divergent correlation length ξ :

$$\kappa_n \sim \xi^{\mathrm{power}(n)}$$

■ Why is ξ finite in heavy-ion collisions? Infinite ξ needs infinite time – critical slowing down. Expansion time τ finite ⇒

$$\xi_{
m max} \sim au^{1/z}$$
 ($z pprox 3$ – universal)

Therefore, the magnitude of fluctuation signals is determined by *non-equilibrium* physics.

Can we describe magnitudes of critical fluctuations directly from non-equilibrium (hydro)dynamical framework?

Hydrodynamics breaks down at CP

Hydrodynamics is expansion in gradients ($k \sim \nabla$), i.e. viscous force \ll pressure gradient, or

$$\zeta k^2 \ll pk$$

Hydrodynamics breaks down at CP

Hydrodynamics is expansion in gradients ($k \sim \nabla$), i.e. viscous force \ll pressure gradient, or

$$\zeta k^2 \ll pk$$

Near CP:
$$\zeta \sim \xi^3 \to \infty$$
 $(z - \alpha/\nu \approx 3)$. [Units: $T = 1$]

Hydrodynamics breaks down at CP

Hydrodynamics is expansion in gradients ($k \sim \nabla$), i.e. viscous force « pressure gradient, or

$$\zeta k^2 \ll pk$$

Near CP:
$$\zeta \sim \xi^3 \to \infty$$
 $(z - \alpha/\nu \approx 3)$. [Units: $T = 1$]

$$(z-\alpha/\nu\approx 3).$$

When
$$k \sim p/\zeta \sim \xi^{-3}$$
 hydrodynamics breaks down.

Critical slowing down and bulk viscosity

Bulk viscosity is the effect of system taking time to adjust to local equilibrium (Mandel'shtam-Leontovich, Khalatnikov-Landau).

$$p_{\text{hydro}} = p_{\text{equilibrium}} - \zeta \, \boldsymbol{\nabla} \cdot \boldsymbol{v}$$

$$\nabla \cdot v$$
 – expansion rate

$$\zeta \sim \tau_{\rm relaxation} \sim \xi^3$$

Critical slowing down and bulk viscosity

Bulk viscosity is the effect of system taking time to adjust to local equilibrium (Mandel'shtam-Leontovich, Khalatnikov-Landau).

$$p_{ ext{hydro}} = p_{ ext{equilibrium}} - \zeta \, m{
abla} \cdot m{v}$$
 $m{
abla} \cdot m{v} - ext{expansion rate}$
 $\zeta \sim au_{ ext{relaxation}} \sim \xi^3$

Hydrodynamics breaks down because of large relaxation time.

Similar to breakdown of an effective theory (non-locality) due to a low-energy mode which should not have been integrated out.

Critical slowing down and Hydro+

೨ There is a critically slow mode ϕ with relaxation time τ_{ϕ} ∼ ξ^{3} .

Critical slowing down and Hydro+

- **೨** There is a critically slow mode ϕ with relaxation time τ_{ϕ} ∼ ξ^{3} .
- To extend the range of hydro extend hydro by the slow mode.

(MS-Yin 1704.07396, 1712.10305)

Critical slowing down and Hydro+

- **೨** There is a critically slow mode ϕ with relaxation time τ_{ϕ} ∼ ξ^{3} .
- To extend the range of hydro extend hydro by the slow mode.

■ "Hydro+" extends the range of validity of hydro to parametrically shorter time ($ω \gg 1/τ_φ \sim ξ^{-3}$) and length ($k \gg ξ^{-3}$) scales.

What is the additional slow mode?

• An *equilibrium* thermodynamic state is completely characterized by $\bar{\varepsilon}$, \bar{n} ,

Fluctuations of ε , n are given by eos: $P \sim \exp(S_{eq}(\varepsilon, n))$.

What is the additional slow mode?

• An *equilibrium* thermodynamic state is completely characterized by $\bar{\varepsilon}$, \bar{n} ,

Fluctuations of ε , n are given by eos: $P \sim \exp(S_{eq}(\varepsilon, n))$.

ullet Hydrodynamics describes *partial-equilibrium states*, i.e., equilibrium is only local, because equilibration time $\sim L^2$. Fluctuations in such states are not necessarily in equilibrium.

Nonequilibrium fluctuations

Measures of fluctuations are additional variables needed to characterize the partial-equilibrium state.

2-point (and n-point) functions of fluctuating hydro variables: $\langle \delta \varepsilon \delta \varepsilon \rangle$, $\langle \delta n \delta n \rangle$, $\langle \delta \varepsilon \delta n \rangle$, . . . (Or probability functional).

Nonequilibrium fluctuations

- Measures of fluctuations are additional variables needed to characterize the partial-equilibrium state.
 - 2-point (and n-point) functions of fluctuating hydro variables: $\langle \delta \varepsilon \delta \varepsilon \rangle$, $\langle \delta n \delta n \rangle$, $\langle \delta \varepsilon \delta n \rangle$, . . . (Or probability functional).
- Relaxation rates of 2pt functions is of the same order as that of corresponding 1pt functions.
 - But effects of fluctuations are *usually* suppressed due to averaging out: $\sqrt{\xi^3/V}\sim (k\xi)^{3/2}$ by CLT.

Critical fluctuations

Near CP there is parametric separation of relaxation time scales.

The slowest and thus most out-of-equilibrium mode is $s/n \equiv m$.

 \blacksquare Rate of m at scale $k \sim \xi^{-1}$,

$$\Gamma \sim D\xi^{-2} \sim \xi^{-3},$$

is of order of that for sound at much smaller $k \sim \xi^{-3}$.

- **●** The effect of δm fluctuations $(k\xi)^{3/2} = \mathcal{O}(1)$.
- Thus we need $\langle \delta m \delta m \rangle$ as the independent variable(s) in hydro+ equations.

Mode distribution of fluctuations

೨ The new variable is 2-pt function $\langle \delta m \delta m \rangle$ (Wigner transform):

$$\phi_{\mathbf{Q}}(\mathbf{x}) = \int_{\Delta \mathbf{x}} \langle \delta m(\mathbf{x} + \Delta \mathbf{x}/2) \delta m(\mathbf{x} - \Delta \mathbf{x}/2) \rangle \ e^{i\mathbf{Q}\cdot\Delta\mathbf{x}}$$

Dependence on x (\sim L) is much slower than on Δx (\sim ξ).

Mode distribution of fluctuations

9 The new variable is 2-pt function $\langle \delta m \delta m \rangle$ (Wigner transform):

$$\phi_{m{Q}}(m{x}) = \int_{\Deltam{x}} \left\langle \, \delta m(m{x} + \Deltam{x}/2) \, \delta m(m{x} - \Deltam{x}/2) \,
ight
angle \, \, e^{im{Q}\cdot\Deltam{x}}$$

- **Dependence** on x ($\sim L$) is much slower than on Δx ($\sim \xi$).
- Hydro(+) describes relaxation to eqlbrm, maximizing entropy.

To ensure the 2nd law of thermodynamics is obeyed we need to know the entropy: $s_{(+)}(\varepsilon,n,\phi_{Q})$, i.e., "EOS+".

Derivation: Given an ensemble of state probabilities p_i

$$S = \sum_{i} p_i \log(1/p_i), \qquad \dots$$

Entropy of fluctuations

... result resembling 2-PI action:

(1712.10305)

$$s_{(+)}(\varepsilon, n, \phi_{\mathbf{Q}}) = s(\varepsilon, n) + \frac{1}{2} \int_{\mathbf{Q}} \left(1 - \frac{\phi_{\mathbf{Q}}}{\overline{\phi}_{\mathbf{Q}}} + \log \frac{\phi_{\mathbf{Q}}}{\overline{\phi}_{\mathbf{Q}}} \right)$$

Entropy of fluctuations

...result resembling 2-PI action:

(1712.10305)

$$s_{(+)}(\varepsilon, n, \phi_{\mathbf{Q}}) = s(\varepsilon, n) + \frac{1}{2} \int_{\mathbf{Q}} \left(1 - \frac{\phi_{\mathbf{Q}}}{\bar{\phi}_{\mathbf{Q}}} + \log \frac{\phi_{\mathbf{Q}}}{\bar{\phi}_{\mathbf{Q}}} \right)$$

- **ullet** Two competing effects: e.g., for $\phi > \bar{\phi}$
 - **●** Wider distribution more microstates more entropy: $\log(\phi/\bar{\phi})^{1/2}$;

VS

▶ Penalty for larger deviations from peak entropy (at $\delta m = 0$): $-(1/2)\phi/\bar{\phi}$.

Maximimum of $s_{(+)}$ is achieved at $\phi = \bar{\phi}$.

Hydro+ mode kinetics

● The mode distribution function ϕ_Q is similar to particle distribution function in kinetic theory (mathematically).

Hydro+ mode kinetics

- **●** The mode distribution function ϕ_Q is similar to particle distribution function in kinetic theory (mathematically).
- **●** The equation for ϕ_Q is a relaxation equation:

$$(u \cdot \partial)\phi_{\mathbf{Q}} = -\gamma_{\pi}(\mathbf{Q})\pi_{\mathbf{Q}}, \quad \pi_{\mathbf{Q}} = -\left(\frac{\partial s_{(+)}}{\partial \phi_{\mathbf{Q}}}\right)_{\varepsilon,n}$$

 $\gamma_\pi(Q)$ is known from mode-coupling calculation in model H (Kawasaki). It is universal. At $Q\sim \xi^{-1}$, $\gamma_\pi(Q)\sim \xi^{-3}$.

Hydro+ mode kinetics

- The mode distribution function ϕ_{Q} is similar to particle distribution function in kinetic theory (mathematically).
- **•** The equation for ϕ_Q is a relaxation equation:

$$(u \cdot \partial)\phi_{\mathbf{Q}} = -\gamma_{\pi}(\mathbf{Q})\pi_{\mathbf{Q}}, \quad \pi_{\mathbf{Q}} = -\left(\frac{\partial s_{(+)}}{\partial \phi_{\mathbf{Q}}}\right)_{\varepsilon,n}$$

 $\gamma_\pi(Q)$ is known from mode-coupling calculation in model H (Kawasaki). It is universal. At $Q\sim \xi^{-1},\,\gamma_\pi(Q)\sim \xi^{-3}$.

■ In equilibrium, Hydro+ = 1-loop. Similar to kinetic theory vs HTL. Separation of scales: $Q \gg k \sim 1/L$.

Hydro+ vs Hydro: real-time bulk response

Characteristic Hydro/Hydro+ crossover rate $\Gamma_{\xi} = D\xi^{-2} \sim \xi^{-3}$.

Dissipation during expansion is overestimated in hydro (dashed):

Only modes with $\omega \ll \Gamma_{\xi}$ experience large ζ .

Stiffness of eos (sound speed) is underestimated in hydro (dashed):

Only modes with $\omega \ll \Gamma_{\xi}$ are critically soft ($c_s \to 0$ at CP).

Summary

- A fundamental question for Heavy-Ion collision experiments:
 Is there a critical point on the boundary between QGP and hadron gas phases the endpoint of a first-order transition?
- Intriguing results from experiments (BES-I).
 More to come (BES-II, FAIR/CBM, NICA, J-PARC).
 Quantitative theoretical framework is needed ⇒ COLLABORATION.
- In H.I.C., the magnitude of the fluctuation signatures of CP is controlled by dynamical non-equilibrium effects.
 - In turn, critical fluctuations affect hydrodynamics.
 - The interplay of critical and dynamical phenomena: Hydro+.

More

Substance ^{[13][14]} \$	Critical temperature \$	Critical pressure (absolute) ¢
Argon	-122.4 °C (150.8 K)	48.1 atm (4,870 kPa)
Ammonia ^[15]	132.4 °C (405.5 K)	111.3 atm (11,280 kPa)
Bromine	310.8 °C (584.0 K)	102 atm (10,300 kPa)
Caesium	1,664.85 °C (1,938.00 K)	94 atm (9,500 kPa)
Chlorine	143.8 °C (416.9 K)	76.0 atm (7,700 kPa)
Ethanol	241 °C (514 K)	62.18 atm (6,300 kPa)
Fluorine	-128.85 °C (144.30 K)	51.5 atm (5,220 kPa)
Helium	-267.96 °C (5.19 K)	2.24 atm (227 kPa)
Hydrogen	-239.95 °C (33.20 K)	12.8 atm (1,300 kPa)
Krypton	-63.8 °C (209.3 K)	54.3 atm (5,500 kPa)
CH ₄ (methane)	-82.3 °C (190.8 K)	45.79 atm (4,640 kPa)
Neon	-228.75 °C (44.40 K)	27.2 atm (2,760 kPa)
Nitrogen	-146.9 °C (126.2 K)	33.5 atm (3,390 kPa)
Oxygen	-118.6 °C (154.6 K)	49.8 atm (5,050 kPa)
CO ₂	31.04 °C (304.19 K)	72.8 atm (7,380 kPa)
N ₂ O	36.4 °C (309.5 K)	71.5 atm (7,240 kPa)
H ₂ SO ₄	654 °C (927 K)	45.4 atm (4,600 kPa)
Xenon	16.6 °C (289.8 K)	57.6 atm (5,840 kPa)
Lithium	2,950 °C (3,220 K)	652 atm (66,100 kPa)
Mercury	1,476.9 °C (1,750.1 K)	1,720 atm (174,000 kPa)
Sulfur	1,040.85 °C (1,314.00 K)	207 atm (21,000 kPa)
Iron	8,227 °C (8,500 K)	
Gold	6,977 °C (7,250 K)	5,000 atm (510,000 kPa)
Water[2][16]	373.946 °C (647.096 K)	217.7 atm (22.06 MPa)

Critical point is a ubiquitous phenomenon

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

೨ At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \delta \sigma^2 \rangle V \rightarrow \infty$.

The key equation:

$$P(\sigma) \sim e^{S(\sigma)}$$
 (Einstein 1910)

౨ At the critical point $S(\sigma)$ "flattens". And $\chi \equiv \langle \delta \sigma^2 \rangle V \rightarrow \infty$.

CLT?

 $\delta\sigma$ is not an average of ∞ many uncorrelated contributions: $\xi\to\infty$

Higher order cumulants

• n > 2 cumulants (shape of $P(\sigma)$) depend stronger on ξ .

E.g., $\langle \sigma^2 \rangle \sim \xi^2$ while $\kappa_4 = \langle \sigma^4 \rangle_c \sim \xi^7$

[PRL102(2009)032301]

• For n > 2, sign depends on which side of the CP we are.

This dependence is also universal.

[PRL107(2011)052301]

Using Ising model variables:

Mapping Ising to QCD phase diagram

T vs μ_B :

● In QCD $(t, H) \rightarrow (\mu - \mu_{\rm CP}, T - T_{\rm CP})$

Critical fluctuations and experimental observables

Observed fluctuations are related to fluctuations of σ .

[MS-Rajagopal-Shuryak PRD60(1999)114028; MS PRL102(2009)032301]

Think of a collective mode described by field σ such that $m=m(\sigma)$:

$$\delta n_{m p} = \delta n_{m p}^{
m free} + rac{\partial \langle n_{m p} \rangle}{\partial \sigma} imes rac{\delta \sigma}{\sigma}$$

The cumulants of multiplicity $M \equiv \int_{\mathbf{p}} n_{\mathbf{p}}$:

$$\kappa_4[M] = \underbrace{\langle M \rangle}_{\text{baseline}} + \underbrace{\kappa_4[\sigma] \times g^4 \left(\bigodot \right)^4}_{\text{this is } \hat{\kappa}_4(\text{a.k.a.} C_4^{\text{Bzdak-Koch}})} + \dots,$$

$$= \int_{\mathcal{P}} \frac{n_{\mathcal{P}}}{\gamma_{\mathcal{P}}} \leftarrow \text{acceptance dependent}$$

Why ξ is finite

System expands and is out of equilibrium

Kibble-Zurek mechanism:

Critical slowing down means $\tau_{\rm relax} \sim \xi^z$. Given $\tau_{\rm relax} \lesssim \tau$ (expansion time scale):

$$\xi \lesssim \tau^{1/z}$$
,

 $z \approx 3$ (universal).

Critical slowing down and ξ

Estimates: $\xi \sim 2-3$ fm (Berdnikov-Rajagopal)

KZ scaling for $\xi(t)$ and cumulants (Mukherjee-Venugopalan-Yin)

Ingredients of "Hydro+"

- As a warmup consider one extra slow mode.
- Nonequilibrium entropy, or quasistatic EOS:

$$s_{(+)}(\varepsilon, n, \phi)$$

Equilibrium entropy is the maximum of $s_{(+)}$:

$$s(\varepsilon, n) = \max_{\phi} s_{(+)}(\varepsilon, n, \phi)$$

Ingredients of "Hydro+"

- As a warmup consider one extra slow mode.
- Nonequilibrium entropy, or quasistatic EOS:

$$s_{(+)}(\varepsilon, n, \phi)$$

Equilibrium entropy is the maximum of $s_{(+)}$:

$$s(\varepsilon, n) = \max_{\phi} s_{(+)}(\varepsilon, n, \phi)$$

The 6th equation (constrained by 2nd law):

$$(u \cdot \partial)\phi = -\gamma_{\pi}\pi - A_{\phi}(\partial \cdot u), \qquad \text{where } \pi = -\frac{\partial s_{(+)}}{\partial \phi}$$

 ϕ relaxes to equilibrium ($\pi = 0$) at a rate $1/\tau_{\phi} \equiv \Gamma = \gamma_{\pi}(\partial \pi/\partial \phi)$.

Linearized Hydro+

9 4 longitudinal modes (sound×2 + density + ϕ).

In addition to c_s , D, etc. Hydro+ has two more parameters

$$\Delta c^2 = c_{(+)}^2 - c_s^2$$
 and $\Gamma = 1/ au_\phi$.

Linearized Hydro+

೨ 4 longitudinal modes (sound×2 + density + ϕ). In addition to c_s , D, etc. Hydro+ has two more parameters

$$\Delta c^2 = c_{(+)}^2 - c_s^2$$
 and $\Gamma = 1/ au_{\phi}$.

● The sound velocities, i.e., eos stiffness, are different in Regime I ($c_s k \ll \Gamma$) and Regime II (Hydro+):

$$c_s^2 = \left(\frac{\partial p}{\partial \varepsilon}\right)_{s/n,\pi=0} \text{ and } c_{(+)}^2 = \left(\frac{\partial p_{(+)}}{\partial \varepsilon}\right)_{s/n,\phi} > c_s^2$$

Linearized Hydro+

೨ 4 longitudinal modes (sound×2 + density + ϕ). In addition to c_s , D, etc. Hydro+ has two more parameters

$$\Delta c^2 = c_{(+)}^2 - c_s^2$$
 and $\Gamma = 1/ au_{\phi}$.

● The sound velocities, i.e., eos stiffness, are different in Regime I ($c_s k \ll \Gamma$) and Regime II (Hydro+):

$$c_s^2 = \left(\frac{\partial p}{\partial \varepsilon}\right)_{s/n, \pi = 0} \text{ and } c_{(+)}^2 = \left(\frac{\partial p_{(+)}}{\partial \varepsilon}\right)_{s/n, \phi} > c_s^2$$

● In Regime I bulk viscosity is divergent as $\Gamma \to 0$:

$$\Delta \zeta = w \Delta c^2 / \Gamma$$

In Regime II bulk viscosity is finite.

Modes

$$\gamma_L \sim \zeta \sim \Gamma^{-1}$$

Modes

$$\gamma_L \sim \zeta \sim \Gamma^{-1}$$

2-PI entropy

$$S = \sum_{i} p_i \log \frac{1}{p_i}$$

• Microcanonical: e^{S_0} states in interval $\Delta \Psi - p_i = e^{-S_0}$.

$$S = S_0(\Psi).$$
 $\Psi = (\varepsilon, n, \ldots)$

• Canonical: $p_i = e^{J\Psi - W[J]}$.

$$S=W[J]-J\langle\Psi
angle$$
. "1-PI." $J=(eta,eta\mu,\ldots)$.

▶ Partial equilibrium: $p_i = e^{J\Psi + \frac{1}{2}\Psi K\Psi - W[J,K]}$.

$$S=W[J,K]-J\langle\Psi\rangle-rac{1}{2}\langle\Psi K\Psi
angle$$
. "2-PI"

Hydro+ vs one slow mode vs just hydro

