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Essentially two approaches to discovering the QCD critical point.

Each with its own challenges.

Lattice simulations. Sign problem.

Heavy-ion collisions. Non-equilibrium.
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Beam Energy Scan I: intriguing hints
Equilibrium κ4 vs T and µB:

“intriguing hint” (2015 LRPNS)
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Non-equilibrium physics is essential near the critical point.

The challenge taken on by
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Magnitude of fluctuation observables and ξ

Divergent magnitude (κ2) and non-gaussianity (κ3,4) are due to
divergent correlation length ξ:

κn ∼ ξpower(n)

Why is ξ finite in heavy-ion collisions?

Infinite ξ needs infinite time – critical slowing down.
Expansion time τ finite⇒

ξmax ∼ τ1/z (z ≈ 3 – universal)

Therefore, the magnitude of fluctuation signals is determined by
non-equilibrium physics.

Can we describe magnitudes of critical fluctuations directly from
non-equilibrium (hydro)dynamical framework?
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Hydrodynamics breaks down at CP

Hydrodynamics is expansion in gradients (k ∼ ∇),
i.e. viscous force� pressure gradient, or

ζk2 � pk

Near CP: ζ ∼ ξ3 →∞ (z − α/ν ≈ 3). [Units: T = 1]

When k ∼ p/ζ ∼ ξ−3 hydrodynamics breaks down.
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Critical slowing down and bulk viscosity

Bulk viscosity is the effect of system taking time to adjust to local
equilibrium (Mandel’shtam-Leontovich, Khalatnikov-Landau).

phydro = pequilibrium − ζ∇ · v

∇ · v – expansion rate

ζ ∼ τrelaxation ∼ ξ3

Hydrodynamics breaks down because of large relaxation time.

Similar to breakdown of an effective theory (non-locality) due to a
low-energy mode which should not have been integrated out.
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Critical slowing down and Hydro+

There is a critically slow mode φ with relaxation time τφ ∼ ξ3.

To extend the range of hydro – extend hydro by the slow mode.

(MS-Yin 1704.07396, 1712.10305)

“Hydro+” extends the range of validity of hydro to parametrically
shorter time (ω � 1/τφ ∼ ξ−3) and length (k � ξ−3) scales.

M. Stephanov Hydrodynamics for QCD critical point QM 2018 9 / 17



Critical slowing down and Hydro+

There is a critically slow mode φ with relaxation time τφ ∼ ξ3.

To extend the range of hydro – extend hydro by the slow mode.

(MS-Yin 1704.07396, 1712.10305)

“Hydro+” extends the range of validity of hydro to parametrically
shorter time (ω � 1/τφ ∼ ξ−3) and length (k � ξ−3) scales.

M. Stephanov Hydrodynamics for QCD critical point QM 2018 9 / 17



Critical slowing down and Hydro+

There is a critically slow mode φ with relaxation time τφ ∼ ξ3.

To extend the range of hydro – extend hydro by the slow mode.

(MS-Yin 1704.07396, 1712.10305)

“Hydro+” extends the range of validity of hydro to parametrically
shorter time (ω � 1/τφ ∼ ξ−3) and length (k � ξ−3) scales.

M. Stephanov Hydrodynamics for QCD critical point QM 2018 9 / 17



What is the additional slow mode?

An equilibrium thermodynamic state is completely
characterized by ε̄, n̄, . . ..

Fluctuations of ε, n are given by eos: P ∼ exp(Seq(ε, n)).

Hydrodynamics describes partial-equilibrium states,
i.e., equilibrium is only local, because equilibration time ∼ L2.

Fluctuations in such states are not necessarily in equilibrium.
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Nonequilibrium fluctuations

Measures of fluctuations are additional variables needed to
characterize the partial-equilibrium state.

2-point (and n-point) functions of fluctuating hydro variables:
〈δεδε〉, 〈δnδn〉, 〈δεδn〉, . . . . (Or probability functional).

Relaxation rates of 2pt functions is of the same order as that of
corresponding 1pt functions.

But effects of fluctuations are usually suppressed due to aver-
aging out:

√
ξ3/V ∼ (kξ)3/2 by CLT.
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Critical fluctuations

Near CP there is parametric separation of relaxation time scales.

The slowest and thus most out-of-equilibrium mode is s/n ≡ m.

Rate of m at scale k ∼ ξ−1,

Γ ∼ Dξ−2 ∼ ξ−3,

is of order of that for sound
at much smaller k ∼ ξ−3.

The effect of δm fluctuations
(kξ)3/2 = O(1).

Thus we need 〈δmδm〉 as
the independent variable(s)
in hydro+ equations.
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Mode distribution of fluctuations

The new variable is 2-pt function 〈δmδm〉 (Wigner transform):

φQ(x) =

∫
∆x
〈 δm(x + ∆x/2) δm(x−∆x/2) 〉 eiQ·∆x

Dependence on x (∼ L) is much slower than on ∆x (∼ ξ).

Hydro(+) describes relaxation to eqlbrm, maximizing entropy.

To ensure the 2nd law of thermodynamics is obeyed we need to
know the entropy: s(+)(ε, n, φQ), i.e., “EOS+”.

Derivation: Given an ensemble of state probabilities pi

S =
∑
i

pi log(1/pi), . . .
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Entropy of fluctuations

. . . result resembling 2-PI action: (1712.10305)

s(+)(ε, n, φQ) = s(ε, n) +
1

2

∫
Q

(
1−

φQ

φ̄Q
+ log

φQ

φ̄Q

)

Two competing effects: e.g., for φ > φ̄

Wider distribution – more microstates
– more entropy: log(φ/φ̄)1/2 ;

vs
Penalty for larger deviations from
peak entropy (at δm = 0): −(1/2)φ/φ̄.

Maximimum of s(+) is achieved at φ = φ̄.
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Hydro+ mode kinetics

The mode distribution function φQ is similar to particle distribu-
tion function in kinetic theory (mathematically).

The equation for φQ is a relaxation equation:

(u · ∂)φQ = −γπ(Q)πQ, πQ = −
(
∂s(+)

∂φQ

)
ε,n

γπ(Q) is known from mode-coupling calculation in model H
(Kawasaki). It is universal. At Q ∼ ξ−1, γπ(Q) ∼ ξ−3.

In equilibrium, Hydro+ = 1-loop.
Similar to kinetic theory vs HTL.
Separation of scales: Q� k ∼ 1/L.
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Hydro+ vs Hydro: real-time bulk response

Characteristic Hydro/Hydro+ crossover rate Γξ = Dξ−2 ∼ ξ−3.

Dissipation during expansion is
overestimated in hydro (dashed):

Only modes with ω � Γξ
experience large ζ.

Stiffness of eos (sound speed) is
underestimated in hydro (dashed):

Only modes with ω � Γξ are
critically soft (cs → 0 at CP).
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Summary

A fundamental question for Heavy-Ion collision experiments:

Is there a critical point on the boundary between QGP and
hadron gas phases – the endpoint of a first-order transition?

Intriguing results from experiments (BES-I).
More to come (BES-II, FAIR/CBM, NICA, J-PARC).

Quantitative theoretical framework is needed⇒ .

In H.I.C., the magnitude of the fluctuation signatures of CP is
controlled by dynamical non-equilibrium effects.

In turn, critical fluctuations affect hydrodynamics.

The interplay of critical and dynamical phenomena: Hydro+.
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More
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Critical point is
a ubiquitous phenomenon
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Fluctuations are large and non-gaussian at a CP

The key equation:

P (σ) ∼ eS(σ) (Einstein 1910)

At the critical point S(σ) “flattens”. And χ ≡ 〈δσ2〉V →∞.

CLT?

δσ is not an average of∞ many uncorrelated contributions: ξ →∞
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Higher order cumulants

n > 2 cumulants (shape of P (σ)) depend stronger on ξ.

E.g., 〈σ2〉 ∼ ξ2 while κ4 = 〈σ4〉c ∼ ξ7 [PRL102(2009)032301]

For n > 2, sign depends on which side of the CP we are.

This dependence is also universal. [PRL107(2011)052301]

Using Ising model variables:
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Mapping Ising to QCD phase diagram

T vs µB:

In QCD (t,H)→ (µ− µCP, T − TCP)

κn(N) = N +O(κn(σ))
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Critical fluctuations and experimental observables

Observed fluctuations are related to fluctuations of σ.
[MS-Rajagopal-Shuryak PRD60(1999)114028; MS PRL102(2009)032301]

Think of a collective mode described by field σ such that m = m(σ):

δnp = δnfree
p +

∂〈np〉
∂σ

× δσ

The cumulants of multiplicity M ≡
∫
p np:

κ4[M ] = 〈M〉︸︷︷︸
baseline

+ κ4[σ]× g4
( )4

︸ ︷︷ ︸
∼M4︸ ︷︷ ︸

this is κ̂4(a.k.a.CBzdak-Koch
4 )

+ . . . ,

=

∫
p

np
γp

← acceptance dependent
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Why ξ is finite

System expands and is out of equilibrium

Kibble-Zurek mechanism:

Critical slowing down means τrelax ∼ ξz.
Given τrelax . τ (expansion time scale):

ξ . τ1/z,

z ≈ 3 (universal).
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Critical slowing down and ξ

Estimates: ξ ∼ 2− 3 fm
(Berdnikov-Rajagopal)

KZ scaling for ξ(t)
and cumulants
(Mukherjee-Venugopalan-Yin)
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Ingredients of “Hydro+”

As a warmup consider one extra slow mode.

Nonequilibrium entropy, or quasistatic EOS:

s(+)(ε, n, φ)

Equilibrium entropy is the maximum of s(+):

s(ε, n) = max
φ

s(+)(ε, n, φ)

The 6th equation (constrained by 2nd law):

(u · ∂)φ = −γππ −Aφ(∂ · u), where π = −
∂s(+)

∂φ

φ relaxes to equilibrium (π = 0) at a rate 1/τφ ≡ Γ = γπ(∂π/∂φ).
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Linearized Hydro+

4 longitudinal modes (sound×2 + density + φ).

In addition to cs, D, etc. Hydro+ has two more parameters

∆c2 = c2
(+) − c

2
s and Γ = 1/τφ.

The sound velocities, i.e., eos stiffness, are different
in Regime I (csk � Γ) and Regime II (Hydro+):

c2
s =

(
∂p

∂ε

)
s/n,π=0

and c2
(+) =

(
∂p(+)

∂ε

)
s/n,φ

> c2
s

In Regime I bulk viscosity is divergent as Γ→ 0:

∆ζ = w∆c2/Γ

In Regime II bulk viscosity is finite.
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Modes

γL ∼ ζ ∼ Γ−1
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2-PI entropy

S =
∑
i

pi log
1

pi

Microcanonical: eS0 states in interval ∆Ψ – pi = e−S0 .
S = S0(Ψ). Ψ = (ε, n, . . .)

Canonical: pi = eJΨ−W [J ].
S = W [J ]− J〈Ψ〉. “1-PI.” J = (β, βµ, . . .).

Partial equilibrium: pi = eJΨ+ 1
2

ΨKΨ−W [J,K].
S = W [J,K]− J〈Ψ〉 − 1

2〈ΨKΨ〉. “2-PI”
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Hydro+ vs one slow mode vs just hydro
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