Hidden strangeness shines in NA61/SHINE

Antoni Marcinek for the NA61/SHINE Collaboration

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

Quark Matter 2018, 16 May 2018, Lido di Venezia, Italy

Introduction

$\phi=s\overline{s}$ meson according to PDG 2014

- Mass $m = (1019.461 \pm 0.019) \,\mathrm{MeV}$
- Width $\Gamma = (4.266 \pm 0.031) \, \mathrm{MeV}$
- $\mathcal{BR}(\phi \to K^+K^-) = (48.9 \pm 0.5)\%$

Goal of the analysis

- Differential ϕ multiplicities in p+p collisions measured in NA61/SHINE
 - ightarrow as function of rapidity y and transverse momentum p_T
 - \rightarrow from tag-and-probe invariant mass spectra fits in $\phi \rightarrow K^+ K^-$ decay channel

Motivation

- To constrain hadron production models
 - $\rightarrow \phi$ interesting due to its hidden strangeness (ss)
- Reference data for Pb+Pb at the same energies

NA61/SHINE detector

liquid H₂ target

Performance

- total acceptance $\sim 80 \,\%$
- momentum resolution $\sigma(p)/p^2 \sim 10^{-4} \, {\rm GeV^{-1}}$
- track reconstruction efficiency $> 95\,\%$

Antoni Marcinek (IFJ PAN)

Analysis methodology overview

Event selection

- inelastic
- in the target
- with well measured main vertex

Signal extraction

- invariant mass spectra in y, p_T bins
- tag-and-probe fits with background templates from event mixing

TPC track selection

- from main vertex
- well reconstructed
- number of points in TPCs \rightarrow accurate dE/dx and momentum
- PID cut: dE/dx $\sim K^{\pm}$

 $\leftarrow \textit{loss of } \phi \textit{ due to cut efficiency}$

Antoni Marcinek (IFJ PAN)

Hidden strangeness shines in NA61/SHINE

tag-and-probe method \rightarrow ATLAS, LHCb

- Goal: to remove bias of N_{ϕ} due to PID cut efficiency ε
- Simultaneous fit of 2 spectra:

• tag
$$\rightarrow N_{\rm t} = N_{\phi} \varepsilon (2 - \varepsilon)$$

• probe
$$\rightarrow N_{\rm p} = N_{\phi} \varepsilon^2$$

• Imperfect description of the background with event mixing \to 5 % correction and 5 % systematic uncertainty contribution from Monte Carlo study

 Pythia describes spectra shapes best, UrQMD slightly too long tail, EPOS clearly too short tail

- Pythia describes spectra shapes best, UrQMD slightly too long tail, EPOS clearly too short tail
- Fit $p_T e^{-m_T/T} \rightarrow \text{extrapolation to } p_T = \infty \rightarrow \text{tail} < 1 \%$

Antoni Marcinek (IFJ PAN)

• Fit $p_T e^{-m_T/T} \rightarrow \text{extrapolation to } p_T = \infty \rightarrow \text{tail} < 1 \%$

Double & single differential spectra: 80 GeV & 40 GeV

- Pythia describes spectra shapes best, UrQMD slightly too long tail, EPOS clearly too short tail
- Fit $p_T e^{-m_T/T} \rightarrow$ extrapolation to $p_T = \infty \rightarrow$ tail < 4 % & < 1 %

Antoni Marcinek (IFJ PAN)

Double & single differential spectra: 80 GeV & 40 GeV

- Pythia describes spectra shapes best, UrQMD slightly too long tail, EPOS clearly too short tail
- Fit $p_T e^{-m_T/T} \rightarrow$ extrapolation to $p_T = \infty \rightarrow$ tail < 4 % & < 1 %

Antoni Marcinek (IFJ PAN)

Transverse mass spectra at midrapidity

Thermal fit results		
$p_{\rm beam} [{\rm GeV}]$	$T_{\phi} \; [{ m MeV}]$	T_{π^-} [MeV]
158	$150\pm14\pm8$	$159.3 \pm 1.3 \pm 2.6$
80	$148\pm30\pm17$	$159.9 \pm 1.5 \pm 4.1$

Rapidity

• NA61/SHINE consistent with NA49 S. Afanasiev et al., Phys. Lett. B 491, 59 (2000)

Rapidity

NA61/SHINE consistent with NA49 S. Afanasiev et al., Phys. Lett. B 491, 59 (2000)

• EPOS and UrQMD shape comparable to data, Pythia slightly narrower

Rapidity

• NA61/SHINE consistent with NA49 S. Afanasiev et al., Phys. Lett. B 491, 59 (2000)

EPOS and UrQMD shape comparable to data, Pythia slightly narrower

• Fit Gaussian $e^{-y^2/2\sigma_y^2} \rightarrow \text{extrapolation to } y = \infty \rightarrow \text{tails: } 3\% \text{ for 158 GeV}, 7\% \text{ for 80 GeV}, 5\% \text{ for 40 GeV}$

NA49: PLB 491 (2000), PRC 66 (2002), PRL 93 (2004), PRC 77 (2008), PRC 78 (2008)

Comparison of particles / reactions

- All but ϕ in Pb+Pb:
 - $\sigma_{\rm y}$ proportional to ${\rm y}_{\rm beam}$ with the same rate of increase
- two new ϕ points in p+p emphasize peculiarity of ϕ in Pb+Pb

NA49: PLB 491 (2000), PRC 66 (2002), PRL 93 (2004), PRC 77 (2008), PRC 78 (2008)

Comparison of particles / reactions

- All but ϕ in Pb+Pb:
 - $\sigma_{\rm y}$ proportional to ${\rm y}_{\rm beam}$ with the same rate of increase
- two new ϕ points in p+p emphasize peculiarity of ϕ in Pb+Pb

NA49: PLB 491 (2000), PRC 66 (2002), PRL 93 (2004), PRC 77 (2008), PRC 78 (2008)

Comparison of particles / reactions

- All but ϕ in Pb+Pb:
 - $\sigma_{\rm y}$ proportional to ${\rm y}_{\rm beam}$ with the same rate of increase
- two new ϕ points in p+p emphasize peculiarity of ϕ in Pb+Pb

Comparison of particles / reactions

- All but ϕ in Pb+Pb:
 - $\sigma_{\rm y}$ proportional to $y_{\rm beam}$ with the same rate of increase
- two new ϕ points in p+p emphasize peculiarity of ϕ in Pb+Pb

Coalescence

• Not compatible with production through K^+ K^- coalescence, but p+p closer

Reference data for Pb+Pb: total yield

NA49: PRC 66 (2002), PRC 77 (2008), PRC 78 (2008)

- ϕ/π ratio increases with collision energy
- Production enhancement in Pb+Pb about 3×, independent of energy
- Enhancement systematically larger than for kaons, comparable to K⁺
 - $\rightarrow\,$ for K^- consistent with strangeness enhancement in parton phase (square of K^- enhancement)

Comparison with world data and models

p+p world data

• NA61/SHINE results consistent with world data, much more accurate

Comparison with world data and models

p+p world data

NA61/SHINE results consistent with world data, much more accurate

Models

- EPOS close to data, Pythia underestimates experimental data, UrQMD underestimates $\sim 2 \times$, HRG (thermal) overestimates $\sim 2 \times$
- EPOS rises too fast with $\sqrt{s_{NN}}$

Summary

Results

• Differential multiplicities of ϕ mesons in p+p:

158 GeV	first 2D (y and p_T)
80 GeV	2D, first at this energy
40 GeV	$2 \times 1D$, first at this energy

Comparison with experimental data

- Results consistent with p+p world data, showing superior accuracy
- Non-trivial system size dependence of width of rapidity distribution (σ_y), contrasting with that of other mesons → needs study in Be+Be, Ar+Sc, Xe+La
- Confirm enhancement in Pb+Pb, independent of energy in considered range, similar to kaons

Comparison with models

- Each describes well either p_T or y shape, but not both
- None is able to describe total yields

Acknowledgements

- This work was supported by the National Science Centre, Poland (grant numbers: 2014/14/E/ST2/00018, 2015/18/M/ST2/00125)
- and the Foundation for Polish Science MPD program, co-financed by the European Union within the European Regional Development Fund

NA61/SHINE experiment

General info

- Fixed target experiment in the North (experimental) Area of CERN SPS
- Successor of NA49
- Beams
 - hadrons (secondary)
 - ions (secondary and primary)
- \sim 150 physicists
- Physics active since 2009

Physics programme

SHINE = SPS Heavy Ion and Neutrino Experiment

Heavy ion physics

- spectra, correlations, fluctuations
- critical point
- onset of deconfinement
- * EM interactions with spectators

Cosmic rays and neutrinos

- precision measurements of spectra
- cosmic rays: Pierre Auger Observatory, KASCADE
- neutrinos: T2K, Minerνa, MINOS, NOνA, LBNE

Hidden strangeness shines in NA61/SHINE

Data selection

Events

- inelastic
- in the target
- with well measured main vertex

TPC tracks

- from main vertex
- well reconstructed
- number of points in TPCs → accurate dE/dx and momentum
- with dE/dx corresponding to kaons (PID cut)

Kaon candidate selection — PID cut

- Selection done with dE/dx
- Accept tracks in ± 5 % band around kaon Bethe-Bloch curve (area between black curves in right picture)
- Losses due to efficiency of this selection corrected with tag-and-probe method

phase space binning, invariant mass spectrum

phase space binning, invariant mass spectrum

Signal

Convolution of:

- relativistic Breit-Wigner $f_{\rm relBW}(m_{\rm inv};m_\phi,\Gamma)$ resonance shape
- q-Gaussian f_{qG}(m_{inv}; σ, q) broadening due to detector resolution

Background

Obtained with the event mixing method:

• Kaon candidate taken from the current event is combined with candidates from previous 500 events to create ϕ candidates in the mixed events spectrum

Fitting function

$$f(m_{\mathsf{inv}}) = N_{\mathsf{p}} \cdot (f_{\mathsf{relBW}} * f_{\mathsf{qG}})(m_{\mathsf{inv}}; m_{\phi}, \Gamma, \sigma, q) + N_{\mathsf{bkg}} \cdot B(m_{\mathsf{inv}})$$

tag-and-probe method \rightarrow ATLAS, LHCb

- Goal: to remove bias of N_{ϕ} due to PID cut efficiency ε
- Simultaneous fit of 2 spectra:
 - tag at least one track in the pair passes PID cut

$$N_{\rm t} = N_{\phi} \varepsilon (2 - \varepsilon)$$

probe — both tracks pass PID cut

$$N_{\sf p} = N_{\phi} \varepsilon^2$$

Normalization and corrections

Uncertainties

- Total systematic uncertainty = $\sqrt{\sum \sigma_i^2}$
- For p+p @ 40 GeV additional bin-independent 3 % due to $c_{\rm MC}$ averaging
- Statistical uncertainty dominates