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Transits of the critical point: two parameters

What if we miss?

Finite relaxation rate?

I How does the finite expansion rate limit the critical flucts?

ε ≡ τo︸︷︷︸
micro time

× ∂µu
µ

︸ ︷︷ ︸
expansion rate 1/τQ

=
τo
τQ

I How does missing the critical point limit the critical flucts?

∆s ≡
nc
sc

(
s

n
− sc
nc

)
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What should we measure: baryon/entropy see also Stephanov & Yin arXiv:1712.10305

Cn̂n̂ ≡ 〈(δn − (n/s)δs)2〉︸ ︷︷ ︸
flucts of δn̂ ≡ sδ(n/s)

variance in n/s:

not baryon number

I Why? It is a hydro eigenmode and always diverges fast

〈(δn − (n/s)δs)2〉︸ ︷︷ ︸
what we want

∝ Cp︸︷︷︸
specific heat

∝ χIsing︸ ︷︷ ︸
Ising susceptibility

I Wavelength dependent model for the equilibrium correlator

Cn̂n̂(k, t) ≡ 〈δn̂∗(k, t)n̂(−k, t)〉 ∝ χIsing

1 + (kξ)2−η
︸ ︷︷ ︸

Ising prediction

Question: What’s the wavelength of fluctuations near the CP?
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Estimate the wavelength of critical fluctuationsThe maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘ ⌧0
⌧Q
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Di↵usion of �n̂

I The maximum wavelength that can be equilibrated by diffusion:

Do︸︷︷︸
diffusion coef

× τQ︸︷︷︸
the total time

= `2
max︸︷︷︸

the longest wavelength

I Here Do is the (thermal) diffusion coefficient away from the CP:

D0 ∼
`2
o

τo
⇒ `max ∼ `oε−1/2 `o is micro length

The critical wavelength `kz must be in between `o and `max

`o︸︷︷︸
microlength

� `kz︸︷︷︸
typical critical wavelength

� `oε
−1/2

︸ ︷︷ ︸
`max

ε ≡ τ0

τQ
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Slightly miss the critical point: constant n/s trajectories

I Ideal hydro conserves n/s

Entropy conservation: uµ∂µs = −s∂µuµ ⇒ ∂ts = − s

τQ

Baryon conservation: uµ∂µn = −n∂µuµ ⇒ ∂tn = − n

τQ

I Passing through critical point at t = 0 and expansion rate 1/τQ

∆n

nc
≈ − t

τQ

∆s

sc
≈ ∆s︸︷︷︸

detuning

− t

τQ

Near the CP, the trajectories are controlled by the detuning parameter

∆s and the expansion rate ∂µu
µ ≡ 1/τQ
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Straight line trajectories in s − n plane
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−∆µQCD ←→ ∆TIsing ∆s ←→ ∆MIsing

∆TQCD ←→ ∆HIsing ∆n ←→ ∆eIsing
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Hydrodynamic equation for C n̂n̂(k, t) = 〈n̂(k, t)n̂(−k, t)〉
I Start from dissipative hydro with noise

∂µ(TµνIdeal + Tµνdiss + ξµν) = 0

∂µ(jµIdeal + jµdiss + ξµ) = 0

The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘
⌧0
⌧Q
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Di↵usion of �n̂

I Can derive time evolution equations for the correlators

Cee = 〈δe∗(k, t)δe(−k, t)〉 Cnn = 〈δn∗(k, t)δn(−k, t)〉 , etc

I From Cnn, Cee derive an equation for Cn̂n̂ = 〈[δn − (n/s)δs]2〉

∂tC
n̂n̂ = − λeffk

2

Cp︸ ︷︷ ︸
heat diffusion

(Cn̂n̂ − Cp)

From stochastic hydro find that Cn̂n̂ obeys a relaxation equation
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Percentage changing rate of equilibrium

I The equilibrium correlator scales with correlation length

Cp ∝ χIsing χIsing ∝ ξ2−η

I The correlation scales with Ising energy

ξ ∝ (∆eIsing)−aν a ≡ 1/(1− α)

With the map ∆eIsing ∝ ∆n/nc = −t/τQ, we find time

dependence:

ξ(t) = `o

(
t

τQ

)−aν
χIsing (t) = χo

(
ξ(t)

`o

)2−η

I Percentage change per time in equilibrium

∣∣∣∂tξ
ξ

∣∣∣ =
aν

t
∼ 1

t

The equilibrium changes infinitely fast at the CP where t = 0
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Relaxation rate of C n̂n̂

I Substitute χIsing = χo (ξ/`o)2−η into the relaxation equation

∂tC
n̂n̂ = − λeff

χo`o
2(ξ/`o)4−η

︸ ︷︷ ︸
relaxation rate Γ

[Cn̂n̂ − χ(k, t)]

I Define the relaxation rate

Γ ≡ λeff

χo`o
2

︸ ︷︷ ︸
1/τo

× 1

(ξ(t)/`o)4−η
︸ ︷︷ ︸

goes to 0 at CP

I Simplify Γ with ξ(t) = `o( t
τQ

)−aν

Γ =
1

τ0

(
t

τQ

)aνz
where z = 4− η.

At CP, the hydo fluctuations relax infinitely slowly
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Transiting the CP: Kibble-Zurek scales Berdnikov & Rajagopal; Mukherjee, Venugopalan, Yin

I When is this the changing rate of equilibrium

comparable to the relaxation rate Γ ?

∣∣∣∂tξ
ξ

∣∣∣ ∼ 1

t
=

(t/τQ)aνz

τo
= Γ

The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘
⌧0
⌧Q
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Di↵usion of �n̂

I The solution is defined to be Kibble-Zurek time tkz

tkz = ε1/(aνz+1)τQ = ε0.26τQ

I Kibble-Zurek length is defined to be

`kz = ξ(tkz) = `oε
−aν/(aνz+1) = `oε

−0.19

`o︸︷︷︸
micro-length

� `oε
−0.19

︸ ︷︷ ︸
kibble-zurek `kz

� `oε
−0.5

︸ ︷︷ ︸
cutoff `max
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Transiting the critical point: Rescaled equation

I Measure t and k in KZ units

t̄ = t/tkz k̄ = k`kz

I Cn̂n̂ is cut off at χkz

C̄n̂n̂ = Cn̂n̂/χkz χkz ≡ χIs(tkz) = χoε
−0.365

I The rescaled equation becomes

∂t̄ C̄
n̂n̂ = − k̄

2

χ̄

(
C̄n̂n̂ − χ̄

)
χ̄ =

χ̄Ising

1 + (k̄ ξ̄)2−η

All dimensionful quantities are rescaled into the KZ-units
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Solutions for C n̂n̂/χkz
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What have we learnt so far?

I We have obtained order-1 plots after rescaling with KZ units

Cn̂n̂/χkz ∼ 1 klkz ∼ 1 t/tkz ∼ 1

I The typical critical wavelength is `kz

`o︸︷︷︸
micro-length

� `oε
−0.19

︸ ︷︷ ︸
kibble-zurek `kz

� `oε
−0.5

︸ ︷︷ ︸
cutoff `max

Numerically these evaluate to with ε = 1/5 and `0 = 1.2 fm

1.2 fm� 1.6 fm� 2.7 fm

So the correlation is at most twice the interparticle spacing!

And the fluctuations are 80% larger than baseline:

Cn̂n̂

χ0
∼
(
`kz

`0

)2−η
= ε−0.365 ∼ 1.8

Cn̂n̂ has length scale `kz and has limited growth of 80%
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Slightly miss the critical point: scalings

I From Ising scaling, ξ(∆eIsing,∆MIsing), scales

ξ = `o(∆eIs)−aνfξ(∆eIs/∆MIs

1−α
β

︸ ︷︷ ︸
scaling var

)

I Translating to QCD

∆eIsing ↔
∆n

nc
= − t

τQ
∆MIsing ↔

∆s

sc
∼ ∆s

I The scaling of the Ising EOS implies a scaling in time

ξ = `o

(
t

τQ

)−aν
× fξ(t/tcr )︸ ︷︷ ︸

scaling func

tcr ≡ ∆s
1−α
β τQ

tcr is a new time scale that quantifies the missing of CP
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Detailed scaling regime happens when t ∼ tkz

�

t

Detailed 
Scaling 
Regime

t ⇠ tcr

Is
in
g

Asymptotics
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Detailed scaling regime is obscured by KZ dynamics if tkz � tcr

�

t

Detailed 
Scaling 
Regime

t ⇠ tcr

Critical

slowing

down

t ⇠ tkz

Is
in
g

Asymptotics

22 / 24



Missing the critical point further limits the flucts
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Conclusions

I There are two scales tkz and tcr , they compete with each other

tkz = ε0.26τQ vs tcr = ∆s
2.72τQ

Numerically with τQ = 10 fm, ε = 0.2, ∆s = 0.3

tkz = 6.58 fm � tcr = 0.38 fm

So Kibble-Zurek dynamics is more important than detailed scaling

I Cn̂n̂ is a non-flow, and is quite local near CP

`o � `oε
−0.19 � `oε

−0.5 � R

1.2 fm︸ ︷︷ ︸
micro-length `o

1.6 fm︸ ︷︷ ︸
Kibble-Zurek `kz

2.7 fm︸ ︷︷ ︸
cutoff `max

15 fm︸ ︷︷ ︸
nucleus size
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