Constraining the QCD critical endpoint with lattice simulations?

Attila Pásztor

University of Wuppertal

In collaboration with: Sz. Borsányi, Z. Fodor, M. Giordano, J. Günther, K. Kapás, S. Katz

Quark Matter 2018

- There exists now lattice calculations of χ^B_6 and χ^B_8 for fine lattices.
- Such fluctuations were used to try to constrain the critical point before. Two recent examples:
 - D'Elia et al, 1611.08285, Phys.Rev. D95 (2017) no.9, 094503
 - Bazavov et al, 1701.04325, Phys.Rev. D95 (2017) no.5, 054504
- Can we really learn something about the QCD critical point from these lattice simulations?

Spoilers: Not yet. Our results on fine lattices, up to χ_6^B and χ_8^B (with large errors) show no sign of criticality.

Theoretical Background: Lee-Yang zeros

Look at the partition function as a complex function of its parameters and look for zeros:

$$\mathcal{Z}\left(\mu^{2},\beta
ight)=0$$

Two choices:

- Fix a real μ and look for zeros in the complex β plane (Fischer zeros)
- Fix a real β (\sim temperature) and look for zeros in the complex μ^2 plane

In the case of a 1st order transition it is easy to show that:

Im
$$\beta_{\rm LY}$$
 or Im $\mu_{\rm LY}^2 \sim \frac{1}{\rm V}$

If we have a nonzero infinite volume limit of $\mathrm{Im}\,\beta_{\mathrm{LY}}$ or $\mathrm{Im}\,\mu_{\mathrm{LY}}^2$ we have a crossover. In this case $\mathrm{Im}\,\beta_{\mathrm{LY}}$ can be tought of as a measure of the strength of the crossover.

Connection to the Taylor expansion

In finite V:

$$\mathcal{Z}(\mu,\beta) = \sum_{-3N_s^3}^{N=3N_s^3} Z_N(\beta) e^{N\mu/T}$$

- polynomial in $e^{\mu/T} \equiv e^{\hat{\mu}} \implies$ has $6N_s^3$ complex roots
- roots of $\mathcal{Z} \implies$ singularity in $p \propto \ln \mathcal{Z}$

The Taylor expansion of the pressure in any finite volume:

$$p(\mu,\beta) = p_0(\beta) + p_2(\beta)\hat{\mu}^2 + p_4(\beta)\hat{\mu}^4 + \dots \propto \log \mathcal{Z}(\mu,\beta)$$

will have a convergence radius equal to the modulus of the Lee Yang zero nearest to $\mu=0.$

•
$$\exists N : \forall n > N : p_{2n} \ge 0 \implies \mu_{LY}^2 \in \mathbb{R}, \mu_{LY}^2 > 0$$

• Im
$$\mu_{LY}^2 \neq 0 \implies \exists n : p_{2n} < 0$$

Some possible scenarios

A scenario with a critical point

A scenario with a critical point

Attila Pásztor (Uni Wuppertal)

Constraining the QCD critical endpoint with I

- Known algorithms for calculating the Lee-Yang zeros always involve a sign and an overlap problem, both exponential in the volume
- They also get prohibitively expensive for small volumes, but lattices closer to the continuum limit
- For fine lattices, we are basically limited to calculating the first few coefficients of the Taylor series via
 - calculating Taylor coefficients directly at $\mu = 0$
 - or fitting them to restuls of simulations at imaginary μ
- But even if there is a critical point, there is no guarantee that the first few Taylor coefficients are sensitive to it

This talk

Toy model

- (1) We look at a rough course action, $N_t = 4$ unimproved staggered, and consider it as a toy model. For this action there is a critical point signal in the literature: Fodor-Katz: JHEP 0404 (2004) 050. We redo the old Fodor-Katz analysis, with an exact algorithm and higher statistics, just to see if we still see the critical point signal
- (2) Next we calculate the Taylor coefficients at a temperature close to T_{CEP} in the same model to see if the convergence radius estimate is close to the critical point estimate from the Lee-Yang zero analysis or not

Realistic, fine lattice

- (1) We present our result for baryon fluctuations up to χ^B_8 and the corresponding convergence radius estimators for the $N_t=12$ 4stout improved lattice data
- (2) We argue that the results show no sign of criticality
- (3) We warn about misinterpreting apparent convergence of the ratio estimators

Why $N_t = 4$ unimproved staggered?

(1) The sign problem is easier

$$\left< \theta^2 \right> \propto - \# V \chi_{11}^{ud} \mu^2 + \mathcal{O}(\mu^4)$$

Continuum: $\chi_{11}^{ud} \sim -0.2$ $N_t = 4$ unimproved staggered: $\chi_{11}^{ud} \sim -0.05$

- (2) The overlap problem is easier, since already at $\mu = 0$ we almost have a phase transition.
- (3) Small enough lattice to use the following reduction formula:

$$\det M(\mu, \beta) = e^{-3N_s^3 N_t \mu} \prod_{i=1}^{6N_s^3} (e^{N_t \mu} - \Lambda_i)$$

Fodor-Katz: JHEP 0404 (2004) 050

- Look explicitly for Lee-Yang zeros in complex β
- We therefore map the strength of the crossover as a function of quark chemical potential, with $\mu_u=\mu_d$ and $\mu_s=0$
- We have redone the old analysis with two differences:
 - R algorithm \rightarrow HMC (an exact algorithm)
 - higher statistics: 2,000-3,000 measurements per ensemble \rightarrow 50,000-100,000 measurements per ensemble
- We got basically the same result.

The Fodor-Katz analysis with higher statistics

The Fodor-Katz analysis with higher statistics

(1) Ratio test for the pressure:

$$p(\mu) = p_0 + p_2 \hat{\mu}^2 + p_4 \hat{\mu}^4 + p_6 \hat{\mu}^6 + \dots$$

Ratio test
$$\rightarrow r_{2n}^p = \sqrt{\frac{p_{2n}}{p_{2n+2}}}$$

(2) Ratio test for the susceptibility:

$$\chi_2(\mu) = 2p_2 + 12p_4\hat{\mu}^2 + 30p_6\hat{\mu}^4 + \dots$$

Ratio test
$$\to r_{2n}^{\chi} = \sqrt{\frac{2n(2n-1)}{(2n+1)(2n+2)}}r_{2n}^{p}$$

Convergence of the first few coefficients? $N_t = 4$

- The exact algorithm and the factor of 50 higher statistics did not change the old Fodor-Katz result
- The high statistics is especially important, since there might be an overlap problem
- The convergence radius estimators near β_E are actually in the same ballpark as the CEP estimate from the Lee-Yang zero analysis
- This might be coincidence, but at least it gives some hope

Our recent paper: hep-lat/1805.04445 On this conference:

- cross-correlators: J. Guenther
- equation of state at finite μ : Sz. Borsanyi
- here: do the results imply anything for criticality?

Comments on our methodology for $N_t = 12$:

- 4stout improved staggered action, $48^3\times 12$ lattices
- The analysis uses simulations at imaginary chemical potentials combined with a Bayesian fit for the Taylor coefficients χ^B_2 , χ^B_4 , χ^B_6 , χ^B_8 and χ^B_{10}
- Only χ^B_8 and χ^B_{10} have a prior. This prior:
 - allows for the HRG prediction but does not prefer it
 - allows for the coefficients to grow faster than in the HRG (a sign of criticality)

Fluctuations for the $N_t = 12$ 4stout ensembles

Why the jumping around?

Has to do with the sign structure of the fluctuations.

- (1) Near and above T_c is the region where the closest Lee-Yang zero very likely has a large imaginary part
- (2) Phenomenologically it has to do with the curvature of the crossover line

To understand this structure consider the following toy model:

- Start with some parametrization of the curve χ^B_1/μ_B at $\mu=0$
- Assume that the only difference in the physics at finite $\boldsymbol{\mu}$ is a shift in this curve
- The inflection point of this curve is one possible definition of T_c , so shift the curve by using the κ values found in the literature
- You now have a model prediction of χ_1^B for any finite μ , differentiate it a few times at $\mu = 0$ to get esimates of χ_4^B , χ_6^B and χ_8^B

NOTE: The model assumes no criticality

RED CURVE: The simple model described in the previous slide This

Attila Pásztor (Uni Wuppertal) Constraining the QCD critical endpoint with I

May 16th 2018 21 / 23

Cartoon: Apparent convegence with no CEP

Below T_c : HRG Near/above T_c : κ

Summary: Do the first few Taylor coefficients constrain the critical point?

- If a critical point is close, one may see it in a fast convergence. $(N_t = 4?)$
- Apparent convergence does not imply CEP. Even in the case with no CEP, the ratios $\sqrt{p_4/p_6}$ and $\sqrt{p_6/p_8}$ will show apparent convergence somewhere below T_c
- Near T_c , the curvature of the crossover implies $\sqrt{|p_2/p_4|} < \sqrt{|p_4/p_6|}$ and $\sqrt{|p_4/p_6|} > \sqrt{|p_6/p_8|}$ Here the closest Lee Yang zero most likely has a large imaginary part.
- For our fine lattice ($N_t = 12$ 4stout):
 - The sign structure of χ^B_6 and χ^B_8 near T_c is consistent with only a κ and no criticality.
 - At lower temperatures the data quickly become compatible with HRG
- None of these observations can be converted into a rigorous bound for the convergence radius.
- Does at least the crossover get stronger at finite μ? Maybe a little, see Sz. Borsanyi's talk.

Attila Pásztor (Uni Wuppertal) Constraining the QCD critical endpoint with I

23 / 23

Backup