

The QCD crossover from Lattice QCD

May 16, 2018 | Patrick Steinbrecher

HotQCD collaboration

The QCD phase diagram

Patrick Steinbrecher

Quantum Chromodynamics

from first principles

- Lattice QCD
 - HISQ action
 - $N_{\sigma} = 4N_{\tau}$
 - sim. at µ = 0
- physical quarks
 - 2 light quarks
 - 1 strange quark
 - $m_s/m_l = 27$
- $m_\pi \simeq 138 \; {
 m MeV}$

everything continuum extrapolated

Chiral observables in two-flavor formulation

subtracted condensate

$$\Sigma_{
m sub} \equiv m_s (\Sigma_u + \Sigma_d) - (m_u + m_d) \Sigma_s$$

with
$$\Sigma_f = \frac{T}{V} \frac{\partial}{\partial m_f} \ln Z$$

subtracted susceptibility

$$\chi_{\rm sub} \equiv \frac{T}{V} m_{s} \left(\frac{\partial}{\partial m_{u}} + \frac{\partial}{\partial m_{d}} \right) \Sigma_{\rm sub}$$

• $\chi_{
m disc}$ is defined as $\chi_{
m sub}$ without connected part

Start of the QCD crossover line: T_0

two crossover temperatures: $T_0(\Sigma_{sub})$ and $T_0(\chi_{sub})$

Patrick Steinbrecher

Pseudo-critical temperatures

- for m_l → 0: pseudo-critical temperatures converge to the chiral transition temperature T⁰_c
- at finite quark mass it is given by maximum of O(4) universal scaling functions (Tuesday talk, Anirban Lahiri, Chiral phase transition)

$$\chi_{m} = m_{l}^{1/\delta - 1} f_{\chi}(z) + \text{reg.} \qquad \begin{array}{c} 0.4 \\ 0.35 \\ \chi_{t} = m_{l}^{(\beta - 1)/\beta\delta} f_{G}'(z) + \text{reg.} \qquad \begin{array}{c} 0.3 \\ 0.25 \\ 0.2 \\ 0.15 \\ 0.2 \\ 0.15 \\ 0.4$$

The subtracted chiral susceptibility

The subtracted chiral susceptibility

The 2nd μ_B derivative of chiral condensate Σ_{sub}

The 1st T derivative of chiral condensate $\Sigma_{\rm sub}$

The T_0 continuum extrapolation

Crossover temperature T_0

The QCD crossover at $\mu \neq 0$

need Taylor expansion in T and μ_B around $(T_0, 0)$

Patrick Steinbrecher

Taylor expansion in chemical potentials (just notation)

- simplest case $\mu_Q = \mu_S = 0$
- subtracted condensate

$$\frac{\Sigma_{\rm sub}}{f_{K}^{4}} = \sum_{n=0}^{\infty} \frac{c_{n}^{\Sigma}}{n!} \hat{\mu}_{B}^{n} \qquad \text{with} \qquad c_{n}^{\Sigma} = \left. \frac{\partial \Sigma_{\rm sub}/f_{K}^{4}}{\partial \hat{\mu}_{B}^{n}} \right|_{\mu=0}$$

disconnected susceptibility

$$\frac{\chi_{\text{disc}}}{f_{K}^{4}} = \sum_{n=0}^{\infty} \frac{c_{n}^{\chi}}{n!} \hat{\mu}_{B}^{n} \qquad \text{with} \qquad c_{n}^{\chi} = \left. \frac{\partial \chi_{\text{disc}}/f_{K}^{4}}{\partial \hat{\mu}_{B}^{n}} \right|_{\mu=0}$$

• same notation for HIC: $n_S = 0$, $\frac{n_Q}{n_B} = 0.4$

Coefficients for a strangeness neutral system

May 16, 2018

Slide 13

The curvature of the crossover line

$$\frac{T_c(\mu_B)}{T_0} = 1 - \kappa_2 \left(\frac{\mu_B}{T_0}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_0}\right)^4 + \mathcal{O}(\mu_B^6)$$

• Taylor expansion in μ and T of:

$$\frac{d}{dT}\frac{\chi_{\rm disc}(T,\mu_B)}{f_K^4} = (...)\mu_B^2 + (...)\mu_B^4 + ... = \mathbf{0}$$

has to be zero order by order

$$\kappa_{2} = \frac{1}{2T_{0}^{2}} \frac{T_{0} \left. \frac{\partial c_{2}^{\chi}}{\partial T} \right|_{(T_{0},0)} - 2 \left. c_{2}^{\chi} \right|_{(T_{0},0)}}{\frac{\partial^{2} c_{0}^{\chi}}{\partial T^{2}} \right|_{(T_{0},0)}}$$

The QCD crossover line

ALICE: arxiv:1408.6403

The curvature κ_n for strangeness neutral system

The crossover line

Fluctuations along the QCD crossover $T_c(\mu_B)$

Baryon-number fluctuations

$$\frac{\sigma_B^2}{V f_K^3} = \frac{1}{V f_K^3} \frac{\partial \ln Z}{\partial \hat{\mu}_B^2} = \sum_{n=0}^{\infty} \frac{c_n^B}{n!} \hat{\mu}_B^n \quad \text{with} \quad c_n^B = \frac{1}{V f_K^3} \left. \frac{\partial \ln Z}{\partial \hat{\mu}_B^{n+2}} \right|_{\mu=0}$$

- σ_B^2 couples to condensate \longrightarrow diverges at a critical point
- study increase along the crossover line

$$\frac{\sigma_B^2(T_c(\mu_B),\mu_B) - \sigma_B^2(T_0,0)}{\sigma_B^2(T_0,0)} = \lambda_2 \left(\frac{\mu_B}{T_0}\right)^2 + \lambda_4 \left(\frac{\mu_B}{T_0}\right)^4 + \cdots$$

Baryon-number fluctuations \rightsquigarrow along $T_c(\mu_B)$

Susceptibility fluctuations \rightsquigarrow along $T_c(\mu_B)$

 σ_B^2 and $\chi_{\rm disc}$ show no indication that crossover gets stronger

Summary

- crossover starts at $T_0 = 156.5 \pm 1.5 \text{ MeV}$
- crossover curvature for strangeness neutral system

•
$$\frac{T_{c}(\mu_{B})}{T_{0}} = 1 - \kappa_{2} \left(\frac{\mu_{B}}{T_{0}}\right)^{2} - \kappa_{4} \left(\frac{\mu_{B}}{T_{0}}\right)^{4} + \mathcal{O}(\mu_{B}^{6})$$

- $\kappa_2 = 0.0123 \pm 0.003$
- $\kappa_4 = 0.000131 \pm 0.0041$
- for $\mu_B < 250 \text{ MeV}$ and $n_s = 0, n_Q/n_B = 0.4$
 - crossover along const. entropy density and energy density
 - chemical freeze-out might be close to crossover
 - no indication for critical point

Thank you for your attention!