The QCD crossover from Lattice QCD
The QCD phase diagram
Quantum Chromodynamics
from first principles

- Lattice QCD
 - HISQ action
 - $N_\sigma = 4N_\tau$
 - sim. at $\mu = 0$

- physical quarks
 - 2 light quarks
 - 1 strange quark
 - $m_s/m_l = 27$

- $m_\pi \simeq 138$ MeV

![Graph showing #configurations vs T [MeV] with lines indicating m_s/m_l=27, N_\tau=16, 12, 8, 6 at different temperatures. The graph indicates everything continuum extrapolated.]
Chiral observables in two-flavor formulation

- subtracted condensate

\[\Sigma_{\text{sub}} \equiv m_s (\Sigma_u + \Sigma_d) - (m_u + m_d) \Sigma_s \]

with \[\Sigma_f = \frac{T}{V} \frac{\partial}{\partial m_f} \ln Z \]

- subtracted susceptibility

\[\chi_{\text{sub}} \equiv \frac{T}{V} m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_d} \right) \Sigma_{\text{sub}} \]

- \(\chi_{\text{disc}} \) is defined as \(\chi_{\text{sub}} \) without connected part
Start of the QCD crossover line: T_0

\[
\frac{d^2}{dT^2} \frac{\Sigma_{\text{sub}}}{f_K^4} \equiv 0 \quad \text{and} \quad \frac{d}{dT} \frac{\chi_{\text{sub}}}{f_K^4} \equiv 0
\]

two crossover temperatures: $T_0(\Sigma_{\text{sub}})$ and $T_0(\chi_{\text{sub}})$
Pseudo-critical temperatures

- for $m_l \to 0$: pseudo-critical temperatures converge to the chiral transition temperature T_c^0

- at finite quark mass it is given by maximum of $O(4)$ universal scaling functions (Tuesday talk, Anirban Lahiri, Chiral phase transition)

\[
\begin{align*}
\chi_m &= m_l^{1/\delta - 1} f_\chi(z) + \text{reg.} \\
\chi_t &= m_l^{(\beta - 1)/\beta \delta} f'_G(z) + \text{reg.}
\end{align*}
\]

- for $m_l \to 0$
 \[\begin{align*}
 \chi_t &\sim \partial_T \Sigma_{\text{sub}} \quad \text{and} \quad \chi_t \sim \partial_{\mu B}^2 \Sigma_{\text{sub}} \\
 \chi_m &\sim \chi_{\text{sub}} \quad \text{and} \quad \chi_m \sim \chi_{\text{disc}}
 \end{align*}\]
The subtracted chiral susceptibility

\[
\chi_{\text{sub}}/f_k^4
\]

\[m_s/m_l=27, \ N_\tau=16\]

\[T [\text{MeV}]\]

May 16, 2018 Patrick Steinbrecher Slide 6
The subtracted chiral susceptibility

\[\chi_{\text{sub}} / f_k^4 \]

\[m_s / m_l = 27, \ N_\tau = 16 \]

May 16, 2018 Patrick Steinbrecher
The 2nd μ_B derivative of chiral condensate Σ_{sub}

$m_s/m_l=27$, $N_\tau=12$

$\mu_Q=\mu_S=0$

HotQCD preliminary
The 1st T derivative of chiral condensate Σ_{sub}

$-T \frac{d\Sigma}{dT}$

$m_s/m_l=27$, $N_\tau=12$

$\tau = 6$, $\tau = 8$

HotQCD preliminary
The T_0 continuum extrapolation

$T_c(\mu_B=0)$ [MeV]

HotQCD preliminary

156.5 ± 1.5 MeV
Crossover temperature T_0

![Graph showing crossover temperature T_0](image_url)

- T_0 [MeV]

- Symbols represent different calculations:
 - Σ_{sub}
 - χ_{disc}
 - χ_{sub}
 - $\partial^2 \Sigma_{sub}$
 - $\partial^2 \chi_{disc}$
 - Σ_{sub}, Bonati 2015
 - χ_{tot}, Bazavov 2012
 - Σ_{sub}, Borsanyi 2010

- HotQCD preliminary
The QCD crossover at $\mu \neq 0$

$$\frac{d^2}{dT^2} \frac{\Sigma_{\text{sub}}(T, \mu_B)}{f_K^4} \equiv 0$$

and

$$\frac{d}{dT} \frac{\chi_{\text{disc}}(T, \mu_B)}{f_K^4} \equiv 0$$

need Taylor expansion in T and μ_B around $(T_0, 0)$
Taylor expansion in chemical potentials (just notation)

- simplest case $\mu_Q = \mu_S = 0$

- subtracted condensate

\[\frac{\Sigma_{\text{sub}}}{f_K^4} = \sum_{n=0}^{\infty} \frac{c_n^\Sigma}{n!} \hat{\mu}_B \]

with

\[c_n^\Sigma = \left. \frac{\partial \Sigma_{\text{sub}}/f_K^4}{\partial \hat{\mu}_B^n} \right|_{\mu=0} \]

- disconnected susceptibility

\[\frac{\chi_{\text{disc}}}{f_K^4} = \sum_{n=0}^{\infty} \frac{c_n^\chi}{n!} \hat{\mu}_B^n \]

with

\[c_n^\chi = \left. \frac{\partial \chi_{\text{disc}}/f_K^4}{\partial \hat{\mu}_B^n} \right|_{\mu=0} \]

- same notation for HIC: $n_S = 0$, $\frac{n_Q}{n_B} = 0.4$
Coefficients for a strangeness neutral system

$-1.6 \quad -1.4 \quad -1.2 \quad -1.0 \quad -0.8 \quad -0.6 \quad -0.4 \quad -0.2 \quad 0$

$135 \quad 145 \quad 155 \quad 165 \quad 175$

$n_S=0, n_Q/n_B=0.4$

$T \text{[MeV]}$

$T_{dc^2/2}/dT$

$m_s/m_l=27, N_t=12$

$T_{dc^2/2}/dT$

$n_S=0, n_Q/n_B=0.4$

$T \text{[MeV]}$

$H\text{otQCD preliminary}$

$T_{dc^2/2}/dT$

$m_s/m_l=27, N_t=12$

$T \text{[MeV]}$

$H\text{otQCD preliminary}$

$H\text{otQCD preliminary}$

$H\text{otQCD preliminary}$
The curvature of the crossover line

\[\frac{T_c(\mu_B)}{T_0} = 1 - \kappa_2 \left(\frac{\mu_B}{T_0} \right)^2 - \kappa_4 \left(\frac{\mu_B}{T_0} \right)^4 + \mathcal{O}(\mu_B^6) \]

- Taylor expansion in \(\mu \) and \(T \) of:

\[\frac{d}{dT} \frac{\chi_{\text{disc}}(T, \mu_B)}{f_K^4} = (\ldots) \mu_B^2 + (\ldots) \mu_B^4 + \ldots = 0 \]

- has to be zero order by order

\[\kappa_2 = \frac{1}{2 T_0^2} \left[T_0 \left. \frac{\partial c_{2}^\chi}{\partial T} \right|_{(T_0,0)} - 2 \left. c_{2}^\chi \right|_{(T_0,0)} \right] \]
The QCD crossover line

$n_S=0$, $n_Q/n_B=0.4$

crossover line: $O(\mu_B^4)$
constant: ϵ
freeze-out: STAR
ALICE

HotQCD preliminary

STAR: arxiv:1701.07065
ALICE: arxiv:1408.6403
The curvature κ_n for strangeness neutral system

$\Sigma_{\text{sub}}, \chi_{\text{disc}}, \Sigma_{\text{sub, Bellwied}}$

$n_S=0$, $n_Q/n_B=0.4$

HotQCD preliminary
The crossover line

\[
\frac{T_c(\mu X)}{T_0} = 1 - \kappa_2^X \left(\frac{\mu X}{T_0} \right)^2 - \kappa_4^X \left(\frac{\mu X}{T_0} \right)^4 + \mathcal{O}(\mu_X^6)
\]

Bonati 2018:
\[X = B, \mu_S = 0\]
\[\kappa_2 = 0.0145(25)\]
Fluctuations along the QCD crossover $T_c(\mu_B)$

- Baryon-number fluctuations

\[
\frac{\sigma_B^2}{Vf_K^3} = \frac{1}{Vf_K^3} \frac{\partial \ln Z}{\partial \hat{\mu}_B^2} = \sum_{n=0}^{\infty} \frac{c_n^B}{n!} \hat{\mu}_B^n \\
\text{with} \quad c_n^B = \left. \frac{1}{Vf_K^3} \frac{\partial \ln Z}{\partial \hat{\mu}_B^{n+2}} \right|_{\mu=0}
\]

- σ_B^2 couples to condensate \rightarrow diverges at a critical point

- study increase along the crossover line

\[
\frac{\sigma_B^2(T_{c}(\mu_B), \mu_B) - \sigma_B^2(T_0, 0)}{\sigma_B^2(T_0, 0)} = \lambda_2 \left(\frac{\mu_B}{T_0} \right)^2 + \lambda_4 \left(\frac{\mu_B}{T_0} \right)^4 + \ldots
\]
Baryon-number fluctuations \sim along $T_c(\mu_B)$

$$\frac{\sigma_B^2(T_c(\mu_B),\mu_B)}{\sigma_B^2(T_0,0)} - 1$$

$O(\mu_B^4)$

$O(\mu_B^2)$

$\sigma_B^2(T_c(\mu_B),\mu_B)/\sigma_B^2(T_0,0) - 1$

$n_S=0$, $n_Q/n_B=0.4$

HRG

HotQCD preliminary

μ_B [MeV]

May 16, 2018 Patrick Steinbrecher Slide 19
Susceptibility fluctuations along $T_c(\mu_B)$

σ_B^2 and χ_{disc} show no indication that crossover gets stronger
Summary

- crossover starts at $T_0 = 156.5 \pm 1.5$ MeV

- crossover curvature for strangeness neutral system
 \[\frac{T_c(\mu_B)}{T_0} = 1 - \kappa_2 \left(\frac{\mu_B}{T_0} \right)^2 - \kappa_4 \left(\frac{\mu_B}{T_0} \right)^4 + O(\mu_B^6) \]
 \[\kappa_2 = 0.0123 \pm 0.003 \]
 \[\kappa_4 = 0.000131 \pm 0.0041 \]

- for $\mu_B < 250$ MeV and $n_s = 0$, $n_Q/n_B = 0.4$
 - crossover along const. entropy density and energy density
 - chemical freeze-out might be close to crossover
 - no indication for critical point
Thank you for your attention!