Relating the Lyapunov exponents to transport coefficients in kinetic theory

Mauricio Martinez Guerrero North Carolina State University

27th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions May 14-19, 2018 Lido di Venezia, Italy

A. Behtash

C. N. Cruz-Camacho

S. Kamata

Towards far-from-equilibrium hydro

- Hydro works fairly well in Pb-Pb, pA and p-p collisions (Weller & Romatschke, Werner et. al., Bozek)
- Different theoretical models indicate hydro work even when the pressure anisotropy $\mathcal{P}_{L} \ | \mathcal{P}_{T} \ \sim 0.3$
 - ⇒ Fluid dynamics can be valid in farfrom-equilibrium situations (Heller, Spalinski, Strickland, Martinez, Ryblewski, Florkowski, Romatschke, Casalderrey, Noronha, Denicol.....)
- The onset of hydrodynamics is determined by the decay of nonhydrodynamic modes
 - ⇒ Hierarchy of microscopic/macroscopic scales seems to be unnecessary
- Each hydrodynamic theory has its own attractor

A. Behtash, CN Cruz, M. Martinez PRD 97, 044041 (2018) See C.N. Cruz and G. Denicol's posters

Motivation: Transport coefficients in far-from-equilibrium regimes

- Can we infer new transport properties in far-fromequilibrium fluid dynamics?
- New ideas related on renormalized/effective transport coefficients Yan, Blaizot, Romatschke

See L. Yan's talk

L. Yan & J. P. Blaizot Phys. Lett. B 780, 283 (2018)

P. Romatschke PRL 120, 012301 (2018)

Our idea

 Develop a new truncation scheme which captures some of the main features of far-from-equilibrium fluids (e.g. non-hydrodynamical modes) while being simple enough to perform concrete calculations

$$\tau_{\pi} D_{\tau} \pi^{\mu\nu} + \pi^{\mu\nu} = \eta \sigma^{\mu\nu}$$

$$\tau_{\pi} (\sigma^{\mu\nu}) D_{\tau} \pi^{\mu\nu} + \pi^{\mu\nu} = \eta (\sigma^{\mu\nu}) \sigma^{\mu\nu}$$

Keep track of the deformation history of the fluid ⇒ Study its rheological properties

Kinetic theory model

Boltzmann Equation in Relaxation Time Approximation (RTA)

$$\partial_{\tau} f = -\frac{1}{\tau_r(\tau)} \left(f - f_{eq.} \right) \qquad \tau_r = \theta_0 / T(\tau)$$

By considering the following ansatz

$$f\left(\tau, p_T, p_\varsigma\right) = f_{eq.}\left(\frac{p^\tau}{T}\right) \left[\sum_{n=0}^{N_n} \sum_{l=0}^{N_l} c_{nl}(\tau) \mathcal{P}_{2l}\left(\frac{p_\varsigma}{\tau p^\tau}\right) \mathcal{L}_n^{(3)}\left(\frac{p^\tau}{T}\right)\right]$$

The components of energy-momentum tensor are

$$\epsilon = \langle (u \cdot p)^2 \rangle = \frac{3}{\pi^2} T^4 ,$$

$$P_T = \langle p_T^2 \rangle = \epsilon \left(\frac{1}{3} - \frac{1}{15} c_1 \right) ,$$

$$P_L = \langle (p_\varsigma / \tau)^2 \rangle = \epsilon \left(\frac{1}{3} + \frac{2}{15} c_1 \right) .$$

A. Behtash et. al, Forthcoming

Moments equations

The mathematical problem of solving the RTA Boltzmann Eq. is mapped into solving equations for the moments (Grad, 1949)

The equations of the moments written in terms of $w = (\tau T)^{-1}$

$$\left(1 - \frac{c_1}{20}\right) \frac{d\tilde{\mathbf{c}}}{dw} + \hat{\mathbf{\Lambda}}\tilde{\mathbf{c}} + \frac{1}{w}\hat{\mathcal{B}}_D\tilde{\mathbf{c}} + \frac{c_1}{5w}\tilde{\mathbf{c}} + \frac{3}{2w}\tilde{\gamma} = 0$$

Elements of Λ are the Lyapunov exponents

Nonlinearities due to mode to mode coupling

Couplings with moments of different order

Moments equations: resurgent properties

$$\left(1 - \frac{c_1}{20}\right) \frac{d\tilde{\mathbf{c}}}{dw} + \hat{\Lambda}\tilde{\mathbf{c}} + \frac{1}{w}\hat{\mathcal{B}}_D\tilde{\mathbf{c}} - \frac{c_1}{5w}\tilde{\mathbf{c}} + \frac{3}{2w}\tilde{\boldsymbol{\gamma}} = 0$$

Moments equations admit the following trans-series solution (O. Costin, 1998). For L=1

$$\tilde{c}_1 = \sum_{n} \tilde{u}_{l,k}^{(0)} w^{-k} + \sigma e^{-s_1 w} w^{b_1} \sum_{n} \tilde{u}_{l,k}^{(1)} w^{-k} + \cdots$$

- Late time behaviour is 'perturbative' and it does not depend on the initial conditions
- ullet The real part of the parameter σ is the freedom associated with the initial conditions
- Information about the non-hydrodynamic transient modes is encoded in the exponentially suppressed terms
 The exponential decay of the non-hydrodynamic modes keep
- The exponential decay of the non-hydrodynamic modes keep track of how the system forgets the initial conditions
- Important: non-hydrodynamic series are related among them via differential recursive relations

A. Behtash et. al, Forthcoming

Numerical results: Evolution of c₁ Asymptotically each solution merges to the attractor

Effective η /s as a non-hydrodynamical series

At $\mathcal{O}(w^{-1})$ the dominant term of the trans-series is

$$c_1 = \frac{\sum_{l} U_{1l}^{-1} \tilde{u}_{l,1}^{(0)}}{w}$$

On the other hand, Chapman-Enskog expansion gives the asymptotic behavior of c

$$c_1 = -\frac{40}{3} \frac{1}{w} \left(\frac{\eta}{s}\right)_0$$

$$\left(\frac{\eta}{s}\right)_0 = -\frac{3}{40} \sum_{l} U_{1l}^{-1} \tilde{u}_{l,1}^{(0)}$$

- Effective η/s is the asymptotic limit of a trans-series
 We can study its rheology by following the 'history' of the corresponding trans-series

Effective η /s as a non-hydrodynamic series

Thus effective η/s is

$$\left(\frac{\eta}{s}\right)_{R} = -\frac{3}{40} \sum_{l} U_{1l}^{-1} \tilde{C}_{l,1} (\sigma e^{-Sw} w^{\tilde{b}})$$

Its RG flow evolution is one of the differential recursive relation of the corresponding trans-series

$$\frac{d}{dw} \left(\frac{\eta}{s}\right)_R = -\frac{3}{40} \sum_l U_{1l}^{-1} \frac{d}{dw} \tilde{C}_{l,1} (\sigma e^{-Sw} w^{\tilde{b}})$$

Conclusions

 We propose a new way to study hydrodynamization and relaxation processes of the Boltzmann equation

⇒ Summation of non-hydrodynamic series

 Prior to the thermal equilibrium η/s receives non-hydrodynamic contributions which depend on the deformation history of the fluid

⇒ η/s features a transition to its equilibrium fixed value which is a diagnostic of Non-newtonian transient behaviour

 The transient rheological behavior of the fluid might explain the unreasonable success of applying hydrodynamics in far-fromequilibrium situations

Outlook

- 1. Non-conformal systems
- 2. Finite chemical potential

▶ Challenges:

- 1. How to generalize to arbitrarily expanding geometries in kinetic theory?
- 2. Phase transitions?

Backup slides

Motivation: Unreasonable success of hydro

Weller and Romatschke, Phys. Lett. B774 (2017) 351-356

Hydrodynamics provide a fairly good description of small, medium and large size systems