Chiral phase transition of (2+1)-flavor QCD

Anirban Lahiri (Bielefeld University) for HotQCD collaboration

2 Scaling analysis : basic definitions and some insights

3 Estimation of T_c^0 from generic scaling arguments

2 Scaling analysis : basic definitions and some insights

3) Estimation of T_c^0 from generic scaling arguments

Introduction?

- In QCD, transition for physical quark masses and vanishing or small baryon density is a crossover.
- T_{pc} for physical mass QCD has been determined with very good accuracy from various observables : $T_{pc}(\mu_B = 0) = 156.5 \pm 1.5$ MeV \Rightarrow "QCD transition at zero and non-zero baryon densities" by Patrick Steinbrecher on 16 May 2018, 11:30 for recent HotQCD results.
- Important question : How do singular terms of the chiral phase transition at vanishing quark mass affect observables at physical values of the quark mass? ⇒ How far the physical regime is from chiral limit w.r.t. scaling window?
- Key question : What is the chiral transition temperature, T_c^0 ?

Introduction?

In this talk, we are trying to address the followings :

- Key question : What is the chiral transition temperature, T_c^0 ?
- Possibly another question : What is the nature of the thermal phase transition in the chiral limit?
- Two possible scenarios : [O. Philipsen and C. Pinke. Phys. Rev. D93, 114507, 2016.]

We are trying to pin down the correct one.

Scaling analysis : basic definitions and some insights

Estimation of T_c^0 from generic scaling arguments

Basic quantities

In terms of temperature T and symmetry breaking field $H=m_l/m_s$ the scaling variables are defined as :

$$t = \frac{1}{t_0} \frac{T - T_c^0}{T_c^0}$$
 and $h = \frac{1}{h_0} \frac{m_l}{m_s} = \frac{1}{h_0} H$

Scaling variable :

$$z = \frac{t}{h^{\frac{1}{\beta\delta}}} = z_0 \left(\frac{T - T_c^0}{T_c^0}\right) \left(\frac{1}{H^{1/\beta\delta}}\right); \quad z_0 = \frac{h_0^{\frac{1}{\beta\delta}}}{t_0}$$

Chiral condensate :

Chiral susceptibility :

$$\begin{split} \langle \bar{\psi}\psi\rangle_f &= \frac{T}{V}\frac{\partial\ln Z}{\partial m_f}\\ \chi^{fg}_m &= \frac{\partial}{\partial m_g}\langle \bar{\psi}\psi\rangle_f \end{split}$$

Universität Bielefeld

Scaling relations

Renormalization group invariant (RGI) definition of order parameter :

$$M = \frac{m_s}{f_K^4} \left(\left(\langle \bar{\psi}\psi \rangle_u + \langle \bar{\psi}\psi \rangle_d \right) - \frac{m_u + m_d}{m_s} \langle \bar{\psi}\psi \rangle_s \right)$$

RGI definition of order parameter susceptibility :

$$\chi_M = \frac{T}{V} m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_d} \right) M$$

Close to chiral limit, singular part behaves as :

$$M = h^{1/\delta} f_G(z)$$

$$\chi_M = \frac{1}{h_0} h^{1/\delta - 1} f_{\chi}(z)$$

 $f_G(z)$ and $f_{\chi}(z)$ are universal scaling functions which have been precisely determined from various spin models.

Scaling functions : Some intriguing facts

Conventional approach to determine T_c^0 : determine pseudo-critical temperature $T_{pc}(H)$ from the peak location of $\chi_M(T,H)$ and

$$T_{pc}(H) = T_c^0 \left(1 + \frac{z_p}{z_0} H^{1/\beta \delta} \right)$$

Our approach in this work : determine temperature $T^-_{60\%}(H)$ at 60% of peak height of $\chi_M(T,H)$ and

$$T^-_{60\%}(H) = T^0_c \left(1 + \frac{z^-_{60\%}}{z_0} H^{1/\beta\delta}\right)$$

Dependence on quark mass (H) reduced by two orders of magnitude

 \Rightarrow

Universität Bielefek

Scaling functions : Some intriguing facts

• Other approach used for consistency check : Crossing points of

$$\frac{H\chi_M}{M} = \frac{f_{\chi}(z)}{f_G(z)} + \text{regular terms.}$$

is unique for $H \to 0$.

• Ratio has a curvature in $z \Rightarrow$ Non-linear part of scaling function is important.

	$1/\delta$
O(2)	0.209
O(4)	0.207

Difference between O(4) and O(2) is negligible in the z range we are working.

Scaling functions : Some intriguing facts

- Ratio is expected to have a constant value at the crossing point, z = 0, *i.e.* in chiral limit at T_c⁰.
- Uniqueness of the crossing point get spoiled in presence of regular terms.
- Around T_c^0 : slope $\propto H^{-1/\beta\delta}$ and curvature $\propto H^{-2/\beta\delta}$.
- Determine temperature $T_{\delta}(H)$ which satisfies :

$$\frac{H\chi_M(T_{\delta}, H)}{M(T_{\delta}, H)} = \frac{1}{\delta} \Rightarrow T_c^0 = \lim_{H \to 0} T_{\delta}(H)$$

Disclaimer

- Here we will mainly show results for $N_{\tau} = 8$ only.
- Same analyses also carried out for $N_{\tau} = 6$.
- Same analyses for $N_{\tau} = 12$ are still at preliminary stage.
- Our goal is to find out the chiral transition temperature, $T_c^0{\rm ,}$ in continuum limit.
- More lattices are still being generated for low masses and the analyses are not settled yet for those parameter sets.
- We are working on the systematic error estimation for various analyses and most of the results shown here are just indicative.

Introduction

2 Scaling analysis : basic definitions and some insights

3 Estimation of T_c^0 from generic scaling arguments

No evidence for $1^{\rm st}$ order transition

- 450 N_s=32 N_=40 ↔ 400 Volume dependence of N_c=56 ↔ χ_M is studied for 350 N_s=∞ HotQCD preliminars H = 1/80 which Σ 300 corresponds to $m_{\pi} = 80 \text{ MeV}$ 250 N_=8 in continuum. 200 $m_{l}/m_{s}=1/80$ • $\chi_M^{\rm max}$ is not proportional 150 to volume. 135 140 145 150 155 160 165 170 T [MeV]
 - Possibility for 1^{st} order phase transition can be ruled out at $m_{\pi} = 80$ MeV for $N_{\tau} = 8$.
 - We only focus on ${\cal O}(2),\, {\cal O}(4)$ and Z(2).
 - Similar results are also obtained for $N_{\tau} = 6$ and 12.
 - $N_{\tau} = 12$: $42^3 \times 12$ and $60^3 \times 12$ lattices have been used for $m_l/m_s = 1/40$.

Estimation of T_c^0 from $H\chi_M/M$

• Behavior of the ratio is like Binder cumulant at critical point.

[F. Karsch and E. Laermann. Phys. Rev. D50, 6954, 1994.]

- For H = 1/27 and 1/20, regular contributions may be larger than lowest three masses.
 Crossing points
- Crossing points for three lowest masses gives an estimate $T_c^0 \sim 144 \text{ MeV}$
 - for $N_{\tau} = 8$.

Fitting $\chi_M^{f_K}$ and M^{f_K} with rational functions

• χ_M for different H are fitted with rational functions :

- peak location : $T_{pc}(H)$.
- 2 peak height : $\chi_M^{\max}(H)$.

3)
$$T^-_{60\%}$$
, defined by :

$$\chi_M \left(T_{60\%}^- \right) = \frac{60}{100} \chi_M^{\max}$$

• M at T_{pc} and $T_{60\%}^{-}$ are calculated for different H by fitting with rational functions.

Sanity checks for T_c^0

• Joint scaling fit of M and χ_M to MEOS with O(2) exponents also gives $T_c^0 \sim 145$ MeV for $N_\tau = 8$.

• Simultaneous fit (with regular term) of $H \cdot \chi_M/M$ to the three lowest masses gives $T_c^0 \sim 144$ MeV for $N_{\tau} = 8$.

Current estimate of T_c^0 for $N_{\tau} = 8$ is 144(2) MeV.

Towards continuum T_c^0

- Current estimate of T_c^0 is 147(2) MeV for $N_{\tau} = 6$ and 138(3) MeV for $N_{\tau} = 12$.
- $T_{60\%}^-$ is approximately independent of H establishes it as a good estimator of T_c^0 .

- Calculations at different m_l/m_s suggest that cut-off effects are only weakly (not) dependent on quark mass.
- Experience from $m_l/m_s = 1/27$ calculations suggest that extrapolation to continuum limit based on $N_{\tau} = 8$ and 12 is safe.

We find $T_c^0 = 138(5)$ MeV in continuum.

Order of chiral transition : work in progress....

- For small *H* the data seems to be linear.
- Lines are NOT fitted curves rather expectations for O(2) and O(4).

- Z(2) transition, at some finite H_c , will results into a strong V dependence and sudden drop in the ratio $\Rightarrow 1^{st}$ order transition is unlikely for $m_{\pi} > 55$ MeV.
- Additional low *H* measurements : slope can be directly determined as fit parameter.

Order of chiral transition : work in progress....

- Z(2) lines are schematic.
- If M is not exactly order parameter then the Z(2) lines will have a curvature.
- Mixing becomes weak as H_c becomes small.
- Data seems to favor O(N) compared to Z(2).

Introduction

2 Scaling analysis : basic definitions and some insights

Estimation of T_c^0 from generic scaling arguments

- Summary :
 - Measurements are according to the expectations even without being specific about the universality class.
 - 2 Proposed method can distinguish between Z(2) and O(N).
 - **③** Scaling fits with O(2) exponents worked reasonably.
 - Current estimate of T_c^0 , in continuum, is 138(5) MeV.
- Outlook :
 - **(**) Finer lattices are being generated for H = 1/40 and 1/80.
 - Calculations at more masses have been planned to have better control on the functional dependence of various quantities.
 - Additional low H measurements will help us to be confident about the scaling behavior.

Summary and Outlook

- Summary :
 - Measurements are according to the expectations even without being specific about the universality class.
 - 2 Proposed method can distinguish between Z(2) and O(N).
 - **③** Scaling fits with O(2) exponents worked reasonably.
 - Current estimate of T_c^0 , in continuum, is 138(5) MeV.
- Outlook :
 - **(**) Finer lattices are being generated for H = 1/40 and 1/80.
 - Calculations at more masses have been planned to have better control on the functional dependence of various quantities.
 - Additional low H measurements will help us to be confident about the scaling behavior.

22