The QCD equation of state at high temperatures

Alexei Bazavov
(in collaboration with P. Petreczky and J. Weber)
based on 1710.05024

Michigan State University

May 15, 2018
Introduction

Earlier results on the equation of state

Lattice QCD setup

Trace anomaly

Cutoff dependence of the pressure

Continuum limit/estimate

Conclusion
Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase.

Experimental program: RHIC, LHC, FAIR, NICA

High-temperature phase: deconfinement, restoration of chiral symmetry

12+1 flavor QCD equation of state at zero baryon density has been recently calculated up to $T = 400 - 500$ MeV

Collins, Perry (1975), Cabbibo, Parisi (1975)
Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase\(^1\)

\(^1\)Collins, Perry (1975), Cabbibo, Parisi (1975)
Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase\(^1\)

Experimental program: RHIC, LHC, FAIR, NICA

\(^1\)Collins, Perry (1975), Cabbibo, Parisi (1975)
Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase1

Experimental program: RHIC, LHC, FAIR, NICA

High-temperature phase: deconfinement, restoration of chiral symmetry

1Collins, Perry (1975), Cabbibo, Parisi (1975)
QCD phase diagram

- Study response of the system to change of external parameters, i.e. temperature and baryon density, asymptotic freedom suggests a weakly interacting phase\(^1\)
- Experimental program: RHIC, LHC, FAIR, NICA
- High-temperature phase: deconfinement, restoration of chiral symmetry
- 2+1 flavor QCD equation of state at zero baryon density has been recently calculated up to \(T = 400 - 500\) MeV

\(^1\) Collins, Perry (1975), Cabbibo, Parisi (1975)
Earlier results on the equation of state

- First perturbative EoS calculation\(^2\) (left)
- First lattice pure gauge \(SU(2)\) EoS calculation\(^3\) (right)

\(^2\)Kapusta (1979)
\(^3\)Engels et al. (1981)
Recent results up to $T = 400$ MeV

- Comparison of the continuum results with HISQ4 and stout5 for the trace anomaly, pressure and entropy density
- About 2σ deviations in the integrated quantities at the highest temperature

4Bazavov et al. [HotQCD] (2014)
5Borsanyi et al. [WB] (2014)
Approach to the perturbative limit

- The trace anomaly (left) and pressure (right) compared with (HTL)\(^6\) and Electrostatic QCD (EQCD)\(^7\) calculations
- The black line is the HTL calculation with the renormalization scale \(\mu = 2\pi T\)

\(^6\)Haque et al. (2014)
\(^7\)Laine and Schroder (2006)
Approach to the perturbative limit

- The trace anomaly (left) and pressure (right) compared with (HTL)6 and Electrostatic QCD (EQCD)7 calculations
- The black line is the HTL calculation with the renormalization scale $\mu = 2\pi T$
- THIS TALK: Extension of the 2+1 flavor equation of state to higher temperatures

6Haque et al. (2014)
7Laine and Schroder (2006)
Lattice QCD

- Switch from Minkowski to Euclidean space – imaginary time formalism
- Define the theory on discrete space-time lattice $N_s^3 N_\tau$
- This is a gauge-invariant regularization scheme with the momentum cut-off π/a, a – lattice spacing
Lattice QCD

- Switch from Minkowski to Euclidean space – imaginary time formalism
- Define the theory on discrete space-time lattice $N_s^3 N_\tau$
- This is a gauge-invariant regularization scheme with the momentum cut-off π/a, a – lattice spacing
- Temperature is set as $T = 1/(aN_\tau)$
Lattice QCD

- Switch from Minkowski to Euclidean space – imaginary time formalism
- Define the theory on discrete space-time lattice $N_s^3 N_\tau$
- This is a gauge-invariant regularization scheme with the momentum cut-off π/a, a – lattice spacing

- Temperature is set as $T = 1/(aN_\tau)$
- Fix N_τ, dial the lattice spacing to cover a temperature range
Lattice QCD

- Switch from Minkowski to Euclidean space – imaginary time formalism
- Define the theory on discrete space-time lattice $N_s^3 N_\tau$
- This is a gauge-invariant regularization scheme with the momentum cut-off π/a, a – lattice spacing

- Temperature is set as $T = 1/(aN_\tau)$
- Fix N_τ, dial the lattice spacing to cover a temperature range
- The continuum limit is reached as $1/N_\tau \to 0$
Trace anomaly

- The partition function

\[Z = \int DUD\bar{\psi}D\psi \exp\{-S\}, \quad S = S_g + S_f \]
Trace anomaly

- The partition function

\[Z = \int DUD\bar{\psi}D\psi \exp\{-S\}, \quad S = S_g + S_f \]

- The trace anomaly

\[\Theta^{\mu\mu} \equiv \epsilon - 3p = -\frac{T}{V} \frac{d \ln Z}{d \ln a} \quad \Rightarrow \quad \frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T_0}^T dT' \frac{\epsilon - 3p}{T'^5} \]
Trace anomaly

- The partition function

\[Z = \int DUD\bar{\psi}D\psi \exp\{-S\}, \quad S = S_g + S_f \]

- The trace anomaly

\[\Theta^{\mu\mu} \equiv \varepsilon - 3p = -\frac{T}{V} \frac{d \ln Z}{d \ln a} \quad \Rightarrow \quad \frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T_0}^{T} dT' \frac{\varepsilon - 3p}{T'^5} \]

- Requires subtraction of UV divergences (subtract divergent vacuum contribution evaluated at the same values of the gauge coupling):

\[\frac{\varepsilon - 3p}{T^4} = R_\beta [\langle S_G \rangle_0 - \langle S_G \rangle_T] - R_\beta R_m [2m_l (\langle \bar{\ell}l \rangle_0 - \langle \bar{\ell}l \rangle_T) + m_s (\langle \bar{s}s \rangle_0 - \langle \bar{s}s \rangle_T)] \]

\[R_\beta (\beta) = -a \frac{d \beta}{da}, \quad R_m (\beta) = \frac{1}{m} \frac{dm}{d\beta}, \quad \beta = \frac{10}{g^2} \]
HISQ data sets

- We use the Highly Improved Staggered Quarks\(^8\) action for two degenerate light quarks and physical-mass strange quark and the tree-level Symanzik-improved gauge action.

- Previous data set:

\[
\begin{align*}
m_l &= \frac{m_s}{20} \\
N_T &= 6, 8, 10, 12 \\
\beta &= 5.9, \ldots, 7.825
\end{align*}
\]

\(^8\)Follana et al. [HPQCD] (2007)
HISQ data sets

- We use the Highly Improved Staggered Quarks8 action for two degenerate light quarks and physical-mass strange quark and the tree-level Symanzik-improved gauge action

- Previous data set:

\[
\begin{align*}
m_l &= m_s/20 \\
N_T &= 6, 8, 10, 12 \\
\beta &= 5.9, \ldots, 7.825
\end{align*}
\]

- New data set:

\[
\begin{align*}
m_l &= m_s/5 \\
N_T &= 4, 6, 8, 10, 12 \\
\beta &= 8, 8.2, 8.4
\end{align*}
\]

8 Follana et al. [HPQCD] (2007)
The trace anomaly with HISQ $m_l = m_s/20$
The trace anomaly with HISQ $m_l = m_s/20$ and $m_l = m_s/5$ at $T > 400\,\text{MeV}$
We have improved the low-temperature region by adding $T = 123$ MeV at $N_\tau = 10$ and $T = 133, 140$ MeV at $N_\tau = 12$
We have improved the low-temperature region by adding $T = 123$ MeV at $N_\tau = 10$ and $T = 133, 140$ MeV at $N_\tau = 12$.

Bands are interpolations of the lattice data and the lines are Hadron Resonance Gas model results with the cutoff dependent spectrum.
At high temperature the continuum limit for HISQ is approached from below
At high temperature the continuum limit for HISQ is approached from below.

The cutoff dependence is similar to the one in free theory.
At high temperature the continuum limit for HISQ is approached from below.

The cutoff dependence is similar to the one in free theory.

$N_T = 12$ has large statistical uncertainty.
The cutoff dependence of the pressure with HISQ and p4 is very similar to the cutoff dependence of quark number susceptibilities:

\[\chi_{2n}^q = \frac{\partial^{2n} p(T, \mu_q)}{\partial \mu_q^{2n}}, \quad n = 1, 2, \quad q = u, d \]
Cutoff dependence of the pressure

- The cutoff dependence of the pressure with HISQ and p4 is very similar to the cutoff dependence of quark number susceptibilities:

\[\chi_{2n}^q = \frac{\partial^2 p(T, \mu_q)}{\partial \mu_q^{2n}}, \quad n = 1, 2, \quad q = l, s \]

- At high temperatures where the weak-coupling picture is expected to hold we can write pressure as the sum of the quark and gluon pressures:
\[p(T) = p^q(T) + p^g(T) \]
Cutoff dependence of the pressure

- The cutoff dependence of the pressure with HISQ and p4 is very similar to the cutoff dependence of quark number susceptibilities:

\[\chi_{2n}^q = \frac{\partial^{2n} p(T, \mu_q)}{\partial \mu_q^{2n}}, \quad n = 1, 2, \quad q = l, s \]

- At high temperatures where the weak-coupling picture is expected to hold we can write pressure as the sum of the quark and gluon pressures: \(p(T) = p^q(T) + p^g(T) \)

- The gluonic pressure is known to have negligible cutoff dependence for improved actions, thus we assume

\[p(T) = p(T, N_\tau) + \text{corr}(T, N_\tau) \]

\[\text{corr}(T, N_\tau) = p^q(T) \left(1 - \frac{p^q(T, N_\tau)}{p^q(T)} \right) \]
We approximate the cutoff dependence of the quark pressure by the one of the second order susceptibilities $\chi^l_{2\,9}$

\[
\frac{p^q(T, N_\tau)}{p^q(T)} \approx \frac{\chi^l_{2}(T, N_\tau)}{\chi^l_{2}(T)}
\]

\(^9\)calculated in Bazavov et al. (2013)
Cutoff dependence of the pressure

- We approximate the cutoff dependence of the quark pressure by the one of the second order susceptibilities $\chi_2^{l,9}$

\[
\frac{p^q(T, N_\tau)}{p^q(T)} \approx \frac{\chi_2^l(T, N_\tau)}{\chi_2^l(T)}
\]

- The QCD pressure is below the ideal gas limit by about 15% at high temperatures

\(^9\)calculated in Bazavov et al. (2013)
Cutoff dependence of the pressure

- We approximate the cutoff dependence of the quark pressure by the one of the second order susceptibilities χ_2^l:

$$\frac{p^q(T, N_\tau)}{p^q(T)} \approx \frac{\chi_2^l(T, N_\tau)}{\chi_2^l(T)}$$

- The QCD pressure is below the ideal gas limit by about 15% at high temperatures.
- We use the ideal quark pressure as an estimate for $p^q(T)$.

\[^9\text{calculated in Bazavov et al. (2013)}\]
Cutoff dependence of the pressure

- We approximate the cutoff dependence of the quark pressure by the one of the second order susceptibilities χ_2^l.\(^9\)

\[
\frac{p^q(T, N_\tau)}{p^q(T)} \approx \frac{\chi_2^l(T, N_\tau)}{\chi_2^l(T)}
\]

- The QCD pressure is below the ideal gas limit by about 15% at high temperatures.
- We use the ideal quark pressure as an estimate for $p^q(T)$.
- The overall estimate

\[
corr(T, N_\tau) \approx p^{q, id-15%}(T) \left(1 - \frac{\chi_2^l(T, N_\tau)}{\chi_2^l(T)}\right)
\]

\(^9\) calculated in Bazavov et al. (2013)
Corrected pressure at fixed cutoff and the continuum limit/estimate (black boxes)
Pressure: continuum limit

- At high temperatures the dominant cutoff dependence is the one of the ideal quark gas, thus the approach to continuum is
 \(\sim \frac{1}{N_T^4} \)

- At low temperatures the cutoff effects are due to taste-symmetry breaking of staggered fermions and scale like
 \(\sim \frac{1}{N_T^2} \)

- We use \(\frac{1}{N_T^4} \) fit for \(T > 200 \text{ MeV} \)

- In \(200 \text{ MeV} < T < 660 \text{ MeV} \) we have four lattice spacings to perform continuum extrapolations, in \(660 \text{ MeV} < T < 800 \text{ MeV} \) – three, and for \(T > 800 \text{ MeV} \) we can only provide a continuum estimate

- The continuum result for the pressure agrees with the corrected results: an important cross-check for continuum extrapolations for \(T < 1330 \text{ MeV} \)
Pressure: continuum limit

- At high temperatures the dominant cutoff dependence is the one of the ideal quark gas, thus the approach to continuum is \(\sim \frac{1}{N^4} \).
- At low temperatures the cutoff effects are due to taste-symmetry breaking of staggered fermions and scale like \(\sim \frac{1}{N^2} \).
At high temperatures the dominant cutoff dependence is the one of the ideal quark gas, thus the approach to continuum is \(\sim 1/N_T^4 \).

At low temperatures the cutoff effects are due to taste-symmetry breaking of staggered fermions and scale like \(\sim 1/N_T^2 \).

We use \(1/N_T^4 \) fit for \(T > 200 \text{ MeV} \).
Pressure: continuum limit

- At high temperatures the dominant cutoff dependence is the one of the ideal quark gas, thus the approach to continuum is $\sim 1/N_T^4$
- At low temperatures the cutoff effects are due to taste-symmetry breaking of staggered fermions and scale like $\sim 1/N_T^2$
- We use $1/N_T^4$ fit for $T > 200$ MeV
- In 200 MeV < T < 660 MeV we have four lattice spacings to perform continuum extrapolations, in 660 MeV < T < 800 MeV – three, and for $T > 800$ MeV we can only provide a continuum estimate
Pressure: continuum limit

- At high temperatures the dominant cutoff dependence is the one of the ideal quark gas, thus the approach to continuum is \(\sim \frac{1}{N^4} \).
- At low temperatures the cutoff effects are due to taste-symmetry breaking of staggered fermions and scale like \(\sim \frac{1}{N^2} \).
- We use \(\frac{1}{N^4} \) fit for \(T > 200 \) MeV.
- In \(200 \) MeV < \(T < 660 \) MeV we have four lattice spacings to perform continuum extrapolations, in \(660 \) MeV < \(T < 800 \) MeV – three, and for \(T > 800 \) MeV we can only provide a continuum estimate.

- The continuum result for the pressure agrees with the corrected results: an important cross-check for continuum extrapolations for \(T < 1330 \) MeV.
Trace anomaly above 800 MeV

- For $N_T \geq 8$ and $T > 300$ MeV there is no cutoff dependence in the trace anomaly.
Trace anomaly above 800 MeV

- For $N_T \geq 8$ and $T > 300$ MeV there is no cutoff dependence in the trace anomaly
- We perform a combined interpolation for $N_T = 8, 10$ and 12 in the temperature interval 300 MeV $< T < 1000$ MeV and obtain a continuum estimate

The $N_T = 4$ and 6 results for the trace anomaly lie below this continuum estimate

We rescale the $N_T = 4$ and 6 results on the trace anomaly by factors 1.2 and 1.4, respectively, to bring them in agreement with the continuum estimate for 800 MeV $< T < 1000$ MeV
Trace anomaly above 800 MeV

- For $N_T \geq 8$ and $T > 300$ MeV there is no cutoff dependence in the trace anomaly.
- We perform a combined interpolation for $N_T = 8$, 10 and 12 in the temperature interval 300 MeV $< T < 1000$ MeV and obtain a continuum estimate.
- The $N_T = 4$ and 6 results for the trace anomaly lie below this continuum estimate.
Trace anomaly above 800 MeV

- For $N_T \geq 8$ and $T > 300$ MeV there is no cutoff dependence in the trace anomaly.
- We perform a combined interpolation for $N_T = 8, 10$ and 12 in the temperature interval 300 MeV $< T < 1000$ MeV and obtain a continuum estimate.
- The $N_T = 4$ and 6 results for the trace anomaly lie below this continuum estimate.
- We rescale the $N_T = 4$ and 6 results on the trace anomaly by factors 1.2 and 1.4, respectively, to bring them in agreement with the continuum estimate for 800 MeV $< T < 1000$ MeV.
Trace anomaly above 800 MeV

Perform a spline interpolation of the combined $N_\tau = 12, 10, 8, 6$ and 4 data in the temperature interval $400 \text{ MeV} < T < 2000 \text{ MeV}$

Integrate the trace anomaly from $T = 660 \text{ MeV}$ to 2000 MeV to get the pressure and the entropy density
Perform a spline interpolation of the combined $N_T = 12, 10, 8, 6$ and 4 data in the temperature interval $400 \text{ MeV} < T < 2000 \text{ MeV}$
Perform a spline interpolation of the combined $N_T = 12, 10, 8, 6$ and 4 data in the temperature interval $400 \text{ MeV} < T < 2000 \text{ MeV}$

Integrate the trace anomaly from $T = 660 \text{ MeV}$ to 2000 MeV to get the pressure and the entropy density
Weak-coupling expansions

- Left: Comparison of the pressure obtained on the lattice with the HTL10 and EQCD11 results
- Right: Comparison of the entropy density obtained on the lattice with the HTL and NLA12 results

10Haque et al. (2014)
11Laine and Schroder (2006)
12Rebhan (2003)
Conclusion

- Previous results by the HotQCD collaboration for the 2+1 QCD equation of state at zero baryon chemical potential have been extended to higher temperatures.
- At temperatures above 400 MeV we use ensembles with $m_l = m_s/5$, the quark mass effects below the statistical uncertainties.
- Up to 660 MeV we perform the continuum limit with four lattice cutoffs.
- At high temperatures the cutoff effects in the pressure are similar to the ones in quark number susceptibilities.
- We use two different methods to estimate the continuum pressure up to 1330 MeV.
- In the interval 660 to 2000 MeV we provide a continuum estimate based on the rescaled $N_T = 4$ and 6 results.
- Reasonable agreement between the weak-coupling results and the lattice at high temperature.