HELMHOLTZ SPITZENFORSCHUNG FÜR **GROSSE HERAUSFORDERUNGEN**

HGS-HIRe for FAIR Helmholtz Graduate School for Hadron and Ion Research

Shear viscosity and resonance lifetimes in the hadron gas

Jean-Bernard Rose

with D. Oliinychenko, J. Torres-Rincon, A. Schäfer, J. Hammelmann, H. Petersen

based on Phys Rev C 97.055204 (arXiv:1709.03826) and arXiv:1709.00369

Helmholtz International Center

Quark Matter 2018, Venice, Italy, May 15th, 2018

Viscosity in heavy ion collisions

 RHIC and LHC measured large elliptic flow at the high energies corresponding to what is thought to be QGP

http://www.quantumdiaries.org/wp-content/uploads/2011/02/FlowPr.jpg

Viscosity in heavy ion collisions

- RHIC and LHC measured large elliptic flow at the high energies corresponding to what is thought to be QGP
- Hydrodynamics relatively successful at explaining this with small η/s

Luzum & Romatschke 10.1103/Phys. Rev. C 78.034915

Viscosity in heavy ion collisions

- RHIC and LHC measured large elliptic flow at the high energies corresponding to what is thought to be QGP
- Hydrodynamics relatively successful at explaining this with small η/s
- Still not clear what the behavior of η/s is at low energies (FAIR, late stage RHIC/LHC)

Previous HG viscosity calculations

Previous HG viscosity calculations

15/05/2018

Modelling the hadron gas: SMASH

See talk by H. Petersen earlier today at 12:30 in Collective Dynamics session

- SMASH is a new semi-classical transport approach for the hadron gas
- Geometric collision criterion:

$$d_{trans} < d_{int} = \sqrt{\frac{\sigma_{tot}}{\pi}}$$

• Spectral functions of resonances are described by relativistic Breit-Wigner functions, with resonance lifetime

$$\tau_{\rm res} = \frac{1}{\Gamma(m)}$$

- Elastic scatterings parameterized for NN; all other elastic scatterings assumed to go through resonances
- Inelastic scatterings, currently include
 - $NN \leftrightarrow NR, NN \leftrightarrow \Delta R$
 - $KN \leftrightarrow KN, KN \leftrightarrow \pi H$
 - +antiparticles
- Strings (turned off for detailed balance)

15/05/2018

Green-Kubo Formalism

Equilibrium in SMASH

- Box calculations simulating infinite matter to apply the Green-Kubo procedure
- MUST have thermal & chemical equilibrium
- Baryon/antibaryon annihilation implemented to conserve detailed balance via an average decay to 5π

Test case #1: π with constant σ

J. Torres-Rincon, PhD dissertation (2012), Hadronic Transport Coefficients from Effective Field Theories

15/05/2018

Test case #2: π-ρ gas

 Normal SMASH run does not coincide directly with Chapman-Enskog

Hadron Gas: Degrees of freedom

Ν	Δ	٨	Σ	Ξ	Ω	Unflavored				Strange
N ₉₃₈	Δ ₁₂₃₂	Λ_{1116}	Σ ₁₁₈₉	Ξ ₁₃₂₁	Ω ⁻ ₁₆₇₂	π ₁₃₈	f _{0 980}	f _{2 1275}	π _{2 1670}	K ₄₉₄
N ₁₄₄₀	Δ_{1620}	Λ_{1405}	Σ ₁₃₈₅	Ξ ₁₅₃₀	Ω ⁻ 2250	π_{1300}	f _{0 1370}	f _{2 1525}		K* ₈₉₂
N ₁₅₂₀	Δ ₁₇₀₀	Λ_{1520}	Σ ₁₆₆₀	Ξ ₁₆₉₀		π_{1800}	f _{0 1500}	f _{2 1950}	$ ho_{31690}$	К _{1 1270}
N ₁₅₃₅	Δ_{1905}	Λ_{1600}	Σ ₁₆₇₀	Ξ ₁₈₂₀			f _{0 1710}	f _{2 2010}		K _{1 1400}
N ₁₆₅₀	Δ ₁₉₁₀	Λ_{1670}	Σ ₁₇₅₀	Ξ ₁₉₅₀		η ₅₄₈		f _{2 2300}	Φ_{31850}	K* ₁₄₁₀
N ₁₆₇₅	Δ ₁₉₂₀	Λ_{1690}	Σ ₁₇₇₅	Ξ ₂₀₃₀		η' ₉₅₈	a _{0 980}	f _{2 2340}		K ₀ * ₁₄₃₀
N ₁₆₈₀	Δ ₁₉₃₀	Λ_{1800}	Σ ₁₉₁₅			η_{1295}	a _{0 1450}		a _{4 2040}	K ₂ * ₁₄₃₀
N ₁₇₀₀	Δ ₁₉₅₀	Λ_{1810}	Σ ₁₉₄₀			η_{1405}		f _{1 1285}		K* ₁₆₈₀
N ₁₇₁₀		Λ_{1820}	Σ ₂₀₃₀			η_{1475}	Φ_{1019}	f _{1 1420}	f _{4 2050}	К _{2 1770}
N ₁₇₂₀		Λ_{1830}	Σ ₂₂₅₀				φ_{1680}			K ₃ * ₁₇₈₀
N ₁₈₇₅		Λ_{1890}				σ_{800}		a _{2 1320}		К _{2 1820}
N ₁₉₀₀		Λ_{2100}					h _{1 1170}			K ₄ * ₂₀₄₅
N ₁₉₉₀		Λ_{2110}				ρ_{776}		π_{11400}		
N ₂₀₈₀		Λ_{2350}				$ ho_{1450}$	b _{1 1235}	π_{11600}		
N ₂₁₉₀		• 5	ospin sv	mmetrv		$ ho_{1700}$				
N ₂₂₂₀		•Pe	erturbat	ive treat	ment		a _{1 1260}	η _{2 1645}		
N ₂₂₅₀		of	non-hac	Ironic pa	articles	ω ₇₈₃				
		(pł	notons.	dilepton	s)	ω_{1420}		ω_{31670}		
15/05/2018	3	Jean-Be	ernard Rose		-1	ω_{1650}				14

Hadron Gas: T and μ_{B} dependence

HG: Viscosity Comparison

15/05/2018

HG: Viscosity Comparison

15/05/2018

High temperature η/s : Resonance lifetimes

High temperature η/s : Resonance lifetimes

High temperature η/s : Resonance lifetimes

π - ρ : Zero lifetimes vs relaxation time

Large part of the difference explained from eliminating lifetimes

Effect of many non-resonant interactions

Introduce a constant elastic cross-section between all particles to add many non-resonant interactions

Summary & Outlook

- Investigated temperature, cross-section and mass dependence of the shear viscosity in an elastic pion box
 - Very good agreement with Chapman-Enskog approximation (within 10%)
 - Resonance lifetimes need to be considered

• Full hadron gas η/s calculated at zero and non-zero μ_B

- High T discrepancy explained by looking at microscopic details of resonance modelling; finite lifetime <u>increases</u> viscosity
- Could be used to constrain the treatment of resonances

• Outlook:

- Investigation of angular dependent interactions on viscosity
- At temperatures close to the phase transition, inclusion of multi-particle interaction will play a role, and needs to be investigated
- Other transport coefficients (electrical conductivity, bulk viscosity, etc.)

Backup slides

Where to stop the fitting?

J. Torres-Rincon, PhD dissertation (2012), Hadronic Transport Coefficients from Effective Field Theories

15/05/2018

Test case #2: Energy-dependent σ

- Pions in a (20 fm)³ box simulating infinite matter
- Cross-section uses ρ resonance
- Runs for t_{max} =200 fm
- Initialized with initial densities consistent with Boltzmann ideal gas

Hadron Gas

- All particles and resonances initialized to thermal multiplicities (at the pole mass)
- Must wait for equilibration and compute *T*, μ once in equilibrium from most abundant particles
 - T fitted from weighted momentum spectra of π, K & N
 - $\mu_{B} \text{ obtained from} \\ N / \text{ anti-} N \text{ ratio}$

15/05/2018

What about entropy?

The entropy density can be calculated from the Gibbs formula:

$$s = \frac{e + p - \mu n}{T} = \frac{w - \mu n}{T}$$

where the energy density and pressure can be taken from the average shear-stress tensor according to:

$$T^{\mu\nu} = diag(e, p, p, p)$$

Assuming a nearly ideal gas, one can fit the temperature and chemical potential with momentum distributions:

$$\frac{dN}{dp} = \frac{g}{2\pi^2} V p^2 \exp\left(-\frac{\sqrt{p^2 + m^2} - \mu}{T}\right)$$

15/05/2018

Hadron Gas: η , s and w/T

15/05/2018

Hadron Gas: Low temperature η/s

- Low temperature hadron gas is composed almost exclusively of pions
- π-π cross-section is then most relevant
 - At very low energy,
 SMASH much higher than UrQMD/χPT
 - χPT includes angular dependence, UrQMD&SMASH don't; increases viscosity by factor up to 5/3 for ρ resonance

