HADES at GSI, Darmstadt, Germany

Outline
- Introduction and recap QM17
- Cold matter effects
- State of the art modelling strangeness
- Reconstruction of baryonic resonances
- Summary and outlook

Sub-threshold strangeness production measured with G. Kornakov for the HADES Collaboration
Elementary and heavy-ion beams $\sqrt{s} = 2.3\text{-}2.7 \text{ GeV}$ at SIS18

- HADES explores baryon-rich matter
- Strangeness production below $\sqrt{s_{NN}}$ threshold

$100 \ p \rightarrow 10 \ \pi \rightarrow 10^{-2} \ K^{+} \rightarrow 10^{-4} \ K^{-}$

Rare probes:
$\phi \rightarrow 2\times10^{-4}/\text{Event in } K^{+}K^{-}$
$\sim 1 \ \text{event out of 5000!}$
HADES Au+Au $\sqrt{s}=2.42$ GeV

- Full azimuthal coverage, 18-85° polar angle
- Fast detector: 1.5×10^6 Au ions/s (8 kHz)
- 7×10^9 events recorded
HADES Au+Au $\sqrt{s}=2.42$ GeV

- Full azimuthal coverage, 18-85° polar angle
- Fast detector: 1.5×10^6 Au ions/s (8 kHz)
 - 7x10⁹ events recorded

Off-line centrality selection:
- Hit/track multiplicity
- Forward Wall
HADES $\text{Au}+\text{Au} \quad \sqrt{s}=2.42 \text{ GeV}$

- **Full azimuthal coverage**, 18-85° polar angle
- **Fast detector**: $1.5 \times 10^6 \text{ Au ions/s (8 kHz)}$
 - 7x10⁹ events recorded

Off-line centrality selection:
- Hit/track multiplicity
- Forward Wall

High purity hadron detectors:
- MDC: momentum ($\Delta P/P<2\%$) and dE/dx
- TOF (Diamond T_0, RPC and Scintillator Walls)
QM-17: Strangeness production consistent with equilibrium at SIS18

QM17 H.Schuldes et al.
QM17 M.Lorenz et al.

- ϕ sizeable source for K^-.
 Feed-down can explain lower effective temperature and rapidity spectrum of K^-
- Universal centrality dependence of strangeness production
- SHM describes hadron yields with global parameters: T, μ_B, R, R_C

Strangeness in cold nuclear matter

- Secondary pion beam 1.7 GeV/C on C and W targets
- Collected events: $N_C = 10^8$ and $N_W = 1.3 \times 10^8$
- Energy: $\sqrt{s_{\pi N}} = 2$ GeV

- $K^-\pi^+$ absorption in π^-W with respect to π^-C
Strangeness in cold nuclear matter

- Secondary pion beam 1.7 GeV/C on C and W targets
- Collected events: \(N_C = 10^8 \) and \(N_W = 1.3 \times 10^8 \)
- Energy: \(\sqrt{s_{\pi N}} = 2 \) GeV

\[\phi_W/K^- \approx \phi_C/K^- \text{ in acceptance} \]

- \(K^- \) absorption in \(\pi^- W \) with respect to \(\pi^- C \)
- \(\phi/K^- \) ratio the same for C and W

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Open question: strangeness production at low energies

- “Abundant” (multi)-strange particles demand an energy reservoir to be produced sub-threshold.

Different approaches:

- Non equilibrium: branching ratios to strange particles!
- Local forced thermalization
- Hagedorn states

Baryon resonances play a key role!
Can we directly measure resonances and their contributions to strangeness production?
A novel iterative method for estimation of the combinatorial background

The combinatorial background is generated by random rotations of measured tracks.

Rotations preserve E and P_T of the track and the event.
A novel iterative method for estimation of the combinatorial background

The combinatorial background is generated by random rotations of measured tracks.

Rotations preserve E and P_T of the track and the event.

All reconstructed pair combinations are split into signal and background iteratively.

Solution in $M-P_T-Y-\theta$
A novel iterative method for estimation of the combinatorial background

The combinatorial background is generated by random rotations of measured tracks.

Rotations preserve E and P_T of the track and the event.

All reconstructed pair combinations are split into signal and background iteratively.

Solution in M-P_T-Y-θ

Validation of the method with simulated* resonance cocktail

A novel iterative method for estimation of the combinatorial background

The combinatorial background is generated by random rotations of measured tracks.

Rotations preserve E and P_T of the track and the event.

All reconstructed pair combinations are split into signal and background iteratively.

Solution in $M-P_T-Y-\theta$

Validation of the method with simulated* resonance cocktail

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
7/13
Validation with narrow states: Λ and K^0_s

No off-vertex condition.

Yield efficiency & acceptance corrected.
Validation with narrow states: Λ and K^0_s

No off-vertex condition.
Yield efficiency & acceptance corrected
Validation with narrow states: $$\Lambda$$ and $$K^0_s$$

inclusive $$\pi^+\pi^-$$

No off-vertex condition.
Yield efficiency & acceptance corrected
Validation with narrow states: Λ and K^0_s

No off-vertex condition.
Yield efficiency & acceptance corrected
Centrality mass and width dependence

\[R \rightarrow \pi^+ p \]

\[\frac{dN}{dM} \text{ [MeV/c}^2] \]

HADES
0-10% Au+Au
\(\sqrt{s} = 2.42 \text{ GeV/c}^2 \)
in acceptance

preliminary
Centrality mass and width dependence

Fit to relativistic BW with mass dependent width.

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Centrality mass and width dependence

Fit to relativistic BW with mass dependent width.
Centrality mass and width dependence

Fit to relativistic BW with mass dependent width.

Qualitative agreement with previous results from EOS in NiCu 1.97A GeV

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Understanding of “kinematical” mass shift

Most probable π^+p pair mass value as a function of pair P_T

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Understanding of “kinematical” mass shift

- Most probable π^+p pair mass value as a function of pair P_T.
- UrQMD evolution with $R \rightarrow \pi^+p$ with no further re-scattering.

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Understanding of “kinematical” mass shift

- Most probable π^+p pair mass value as a function of pair P_T
- UrQMD evolution with $R \rightarrow \pi^+p$ with no further re-scattering.
- UrQMD evolution with $R \rightarrow \pi^+p$ with further re-scattering.
Understanding of “kinematical” mass shift

- Most probable $\pi^+ p$ pair mass value as a function of pair P_T
- UrQMD evolution with $R \rightarrow \pi^+ p$ with no further re-scattering.
- UrQMD evolution with $R \rightarrow \pi^+ p$ with further re-scattering.
- Qualitative agreement of the trend with transport models: UrQMD

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Losing strangeness is 0 because it is a very rare probe!!!!!!!

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Inclusive spectra of π^+p

- $\text{Mult} \sim \langle A_{\text{part}} \rangle \alpha = 1.5 \pm 0.2$ in the Δ^{++} region

- Interplay between re-generation and re-scattering

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Production of charged pions from resonances: the most simple abundant mesons
Production of charged pions from resonances: the most simple abundant mesons

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Production of charged pions from resonances: the most simple abundant mesons

![Graph showing the production of π⁻ from resonance decays](image)
Production of charged pions from resonances: the most simple abundant mesons

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Production of charged pions from resonances: the most simple abundant mesons

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de

0-10% centrality

HADES Acceptance

π⁻ from resonance decays

single pion

\[M_{inv} < 1325 \text{ MeV/c}^2 \]

\[1325 < M_{inv} < 1825 \text{ MeV/c}^2 \]

\[1825 < M_{inv} < 2225 \text{ MeV/c}^2 \]

sum

preliminary

HADES Acceptance

AuAu \(\sqrt{s} = 2.42 \text{ GeV} \)

0-10% centrality
Production of charged pions from resonances: the most simple abundant mesons

❖ Assuming equally produced Δ^{++} at freeze-out: p^{-} yield should be scaled by 4
❖ Pions from high-mass resonances are scaled by 4/3
Production of charged pions from resonances: the most simple abundant mesons

- Assuming equally produced $\Delta^{+0/++}$ at freeze-out: π^- yield should be scaled by 4
- Pions from high-mass resonances are scaled by 4/3
Production of charged pions from resonances: the most simple abundant mesons

- Assuming equally produced $\Delta^{0/+/+}/$ at freeze-out: π^- yield should be scaled by 4
- Pions from high-mass resonances are scaled by $4/3$

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Production of charged pions from resonances: the most simple abundant mesons

- Assuming equally produced $\Delta^{3/2}/0^+/++$ at freeze-out: π^- yield should be scaled by 4
- Pions from high-mass resonances are scaled by 4/3

- Measured charged pions in 0-10% central collisions are well reproduced from decay of baryonic resonances
Summary

- Universal centrality dependence of strangeness production
- K^- and ϕ equally absorbed in cold nuclear matter in pion induced reactions at $\sqrt{S_{\pi N}} = 2$ GeV
- Baryon resonances are relevant for modelling strangeness production.
- A novel iterative technique allows to reconstruct signals with large combinatorial background.
- First steps toward strangeness production from measured baryonic resonances: description of single pion spectra in central collisions.
Summary

- Universal centrality dependence of strangeness production
- K^- and ϕ equally absorbed in cold nuclear matter in pion induced reactions at $\sqrt{s_{\pi N}} = 2$ GeV
- Baryon resonances are relevant for modelling strangeness production.
- A novel iterative technique allows to reconstruct signals with large combinatorial background.
- First steps toward strangeness production from measured baryonic resonances: description of single pion spectra in central collisions.

Outlook

- Understand production of resonances as a function of centrality.
- Calculate kaon spectra.
Summary

- Universal centrality dependence of strangeness production
- K^- and ϕ equally absorbed in cold nuclear matter in pion induced reactions at $\sqrt{s_{\pi N}} = 2$ GeV
- Baryon resonances are relevant for modelling strangeness production.
- A novel iterative technique allows to reconstruct signals with large combinatorial background.
- First steps toward strangeness production from measured baryonic resonances: description of single pion spectra in central collisions.

Outlook

- Understand production of resonances as a function of centrality.
- Calculate kaon spectra.
Summary

- Universal centrality dependence of strangeness production
- K^- and ϕ equally absorbed in cold nuclear matter in pion induced reactions at $\sqrt{s_{\pi N}} = 2$ GeV
- Baryon resonances are relevant for modelling strangeness production.
- A novel iterative technique allows to reconstruct signals with large combinatorial background.
- First steps toward strangeness production from measured baryonic resonances: description of single pion spectra in central collisions.

Outlook

- Understand production of resonances as a function of centrality.
- Calculate kaon spectra.

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Summary

- Universal centrality dependence of strangeness production
- K^- and ϕ equally absorbed in cold nuclear matter in pion induced reactions at $\sqrt{s_{\pi N}} = 2$ GeV
- Baryon resonances are relevant for modelling strangeness production.
- A novel iterative technique allows to reconstruct signals with large combinatorial background.
- First steps toward strangeness production from measured baryonic resonances: description of single pion spectra in central collisions.

Outlook

- Understand production of resonances as a function of centrality.
- Calculate kaon spectra.
Thank you for your attention!

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de
Production of charged pions from resonances: the most simple abundant mesons

- Assuming equally produced $\Delta^{-}/0^{+}/++$ at freeze-out:
 - π^- yield should be scaled by 4
 - π^+ scaled by $4/3$
- Pions from high-mass resonances are scaled by $4/3$

- The deficit of intermediate PT p^+ is due to inexistence of $N \rightarrow \pi^+ p$ channel

- Measured charged pions in 0-10% central collisions from excitation of baryonic resonances

G. Kornakov, TU Darmstadt, QM18, Venice, g.kornakov@gsi.de