Dynamical Initialization with Core-corona Picture in Small Colliding Systems

Yuuka Kanakubo^{a,1}, Michito Okai^{a,2}, Yasuki Tachibana^{b,3}, Tetsufumi Hirano^{a,4}

^a Department of Physics, Sophia University,

^b Department of Physics and Astronomy, Wayne State University

1. Introduction

Strangeness enhancement in small systems

Need of continuous change from fragmentation to chemical-equilibrated matter as increasing multiplicity

ALICE Collaboration. Nat. Phys. 13, (2017) 535.

Towards unified description of high energy nuclear collisions Fragmentation from High $p_{\rm T}$ hard particles suppression Dynamical initialization System size Core-corona large Collective Collectivity in flow from small systems hydrodynamics low

Continuous change of the picture

Purpose of this study

Construct a model to describe dynamics from low to high $p_{\rm T}$ regardless of system size.

Interpretation of strangeness enhancement for each system in one unified framework

2. Model

Parton generation with PYTHIA 8.230 Dynamical initialization with core-corona

T. Sjöstrand *et al.*, Comput. Phys. Commun. 191, 159 (2015). C. Bierlich *et al.*, JHEP 1610 (2016) 139.

Traversing QGP fluids

String fragmentation with PYTHIA 8.230

Hydrodynamic evolution of QGP fluids

from fluids at $T_{\rm ch}$

i) Dynamical initialization M. Okai et al. PRC 95, 054914 (2017).

$$\partial_{\mu} T^{\mu\nu} = J^{\nu},$$

$$I^{\mu} = -\sum_{i} \frac{dp_{i}^{\mu}}{G(\mathbf{x} - \mathbf{x}_{i}(t))}$$

 $T^{\mu\nu}$: Energy-momentum tensor

$$J^{\mu} = -\sum_{i} \frac{dp_{i}^{\mu}}{dt} G(\mathbf{x} - \mathbf{x}_{i}(t))$$
 J^{μ} : Source term from partons to the QGP fluids

 $G(x-x_i)$: Smearing Gaussian function

 $\tau = 0$

 p_i^{μ} , x_i : Four momentum and position of the *i*-th parton

ii) Fluidization with core-corona

Fluidization rate

 $= -a_0 \frac{\rho_i(x_i(t))}{p_{T,i}^2(t)} p_i^{\mu}(t)$ $dp_i^{\mu}(t)$

 $\rho_i(\mathbf{x})d^3x = \sum_{j} G\left(\mathbf{x} - \mathbf{x}_j(t)\right)d^3x$

 $\rho_i(\mathbf{x})$: Density distribution seen from the *i*-th parton

G: Gaussian distribution

 $p_{\mathrm{T},i}$: Transverse momentum of the *i*-th parton

 a_0 : Core-corona parameter

Dynamical core-corona initialization

Interface between two pictures, partons and fluids

3. Results

 au_{00}

i) Strangeness enhancement

Pb+Pb:
$$\sqrt{s_{NN}} = 2.76$$
TeV
p+Pb: $\sqrt{s_{NN}} = 5.02$ TeV
p+p: $\sqrt{s_{NN}} = 7$ TeV

 $dN_{\rm ch}/d\eta < \sim 100$

Competition between string fragmentation and chemical-equilibrated matter

 $dN_{\rm ch}/d\eta \geq \sim 100$

Chemical-equilibrated matter dominance

Multiplicity dependence of strangeness enhancement well described in one framework

ii) $p_{\rm T}$ distribution Pb+Pb: $\sqrt{s_{NN}} = 2.76$ TeV p+p: $\sqrt{s_{NN}} = 2.76 \text{TeV}$ minimum bias $\pi^+ + \pi^-$ Pb+Pb Hydro contribution ×100 High p_{T} in p+p Pb+Pb Fragmentation contribution ×100 — Pb+Pb Full(hydro+fragmentation) ×100 -Fragmentation p+p Hydro contribution dominance p+p Fragmentation contribution — Low p_{T} in Pb+Pb p+p Full(hydro+fragmentation) —— hydro dominance rdb_Tdyb/μδιπα Continuous change from 5 10-4 hydro to fragmentation as increasing p_{T} 10⁻⁶ Dependence of turning point p_T [GeV] on system size

4. Summary

- We developed a dynamical initialization model with core-corona picture based on string fragmentation and hydrodynamics.
- $\sim N_{\rm E}/N_{\pi}$ increases with $dN_{\rm ch}/d\eta$ and saturates above $dN_{\rm ch}/d\eta \sim 100$.

The QGP fluids are partly produced and their fraction increases with $dN_{\rm ch}/d\eta$ in small systems at the LHC energies.