

Contact Info: jesse.thomas.buxton@cern.ch buxton.45@buckeyemail.osu.edu

# **A K Femtoscopy in Pb-Pb Collisions** at $\sqrt{s_{NN}} = 2.76$ TeV with the **LHC ALICE Experiment**





| 1. Introduction                                                                                                                              |                                       |         | 5. Measured AK Correlations with Fits |                                                          |                                                                                                                                     |                                           |                                                              |                                                                   |                           |                                                                                                           |                           |                          |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|---------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|-----------------------|
| Femtoscopic analysis of AK correlations                                                                                                      | $\Lambda = uds$                       | (* × 1. |                                       | ICE Preliminary $\Lambda$                                | <b>(+ 0-10%</b>                                                                                                                     | Pb-Pb √ <i>s</i> <sub>NN</sub> = 2.76 TeV | ′ ⊼K- 0-10%                                                  | Pair Type                                                         | Fit Paran<br>Centrality   | neters (value $\pm s$<br>R                                                                                | statistical error ±       | = systematic err         | or)<br>d <sub>0</sub> |
| <ul> <li>Result of strong final-state interactions</li> <li>Study the ΛK interactions</li> <li>Scattering parameters never before</li> </ul> | $\overline{\Lambda} = \overline{uds}$ | O.      |                                       | val. ± stat. ± sys. λ =<br>R =<br>Re[f0] = -<br>Im[f0] = | $\begin{array}{c} 0.38 \pm 0.09 \pm 0.22 \\ 4.04 \pm 0.38 \pm 0.83 \\ 0.69 \pm 0.16 \pm 0.22 \\ 0.39 \pm 0.14 \pm 0.11 \end{array}$ |                                           | $\lambda = 0.37 \pm 0.08 \pm 0.22$<br>R = 4.04 ± 0.38 ± 0.83 | $\Lambda \mathbf{K}^+ \ \mathbf{\&} \ \bar{\Lambda} \mathbf{K}^-$ | 0-10%<br>10-30%<br>30-50% | $\begin{array}{c} 4.04 \pm 0.38 \pm 0.83 \\ 3.92 \pm 0.45 \pm 0.66 \\ 3.72 \pm 0.55 \pm 0.42 \end{array}$ | $-0.69 \pm 0.16 \pm 0.22$ | $0.39 \pm 0.14 \pm 0.11$ | $0.64\pm0.53\pm1.62$  |

- measured
- $K + = u \overline{s}$ Characterize the AK pair emission regions  $K - = \overline{u} s$

 $K_{s}^{0} = \frac{1}{\sqrt{2}} (d \,\overline{s} + s \,\overline{d})$ 

- → Obey transverse mass  $(m_{\tau})$  scaling
- Signature of hydrodynamic flow
- Investigate striking difference of  $\Lambda K$ + and  $\Lambda K$  systems at small relative momenta ( $k^*$ )
- $\rightarrow$  Effect arising from ss annihilation compared to uu?
- $\rightarrow$  Or S=0  $\Lambda$ K+ system has more interaction channels than S=-2 AK-?

## 2. Femtoscopy (1 fm = $10^{-15}$ m)

- Space-time characterization of particle-emitting sources on femtometer (10<sup>-15</sup> m) scale
- Direct measurement of times/positions of fireball impossible → Extremely small size and lifetime
- Momentum difference of emitted particles is measurable Connected to the time and space properties
- Exploit measured two-particle (or higher) momentum correlations of hadrons to probe freeze-out structure of dynamic matter created in collisions
- Most direct link to size and lifetime
- → Sensitive to quantum statistics, strong and Coulomb interactions
- → Allows for measurements of nuclear scattering parameters
- For some pairs, difficult, if not impossible, to measure otherwise

| 1.05                    | ∆ <b>K- 0-</b> 1                                                                                       | 10%                               | $\overline{\Lambda}$ | K+ 0-10% 🗍 ^                                 |
|-------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|----------------------------------------------|
| 1E <b>∖</b>             |                                                                                                        | Ε <b>λ</b>                        | •                    | • • • • • • • • • • • •                      |
| 0.95                    | val. $\pm$ stat. $\pm$ sys. $\lambda = 0.45 \pm 0.1$<br>R = 4.79 $\pm 0.7$<br>Be[f0] = 0.18 $\pm 0.1$  | 6 ± 0.19<br>79 ± 1.38<br>3 + 0.10 | λ =<br>R =           | = 0.48 ± 0.17 ± 0.15<br>= 4.79 ± 0.79 ± 1.38 |
| 0.9                     | $[f0] = 0.45 \pm 0.1$ $m[f0] = 0.45 \pm 0.1$ $d0 = -5.29 \pm 2.9$                                      | 8 ± 0.18                          |                      |                                              |
| 1.05                    | ለ <b>K</b> <sub>s</sub> 0-                                                                             | 10%                               | $\overline{\Lambda}$ | K <sub>s</sub> <sup>0</sup> 0-10%            |
|                         |                                                                                                        |                                   |                      | <u></u>                                      |
| 0.95                    | val. $\pm$ stat. $\pm$ sys. $\lambda = 0.40 \pm 0.1$<br>R = 3.02 $\pm 0.5$<br>Re[f0] = -0.16 $\pm 0.0$ | 9±0.12<br>54±0.33<br>3±0.04       | λ =<br>R =           | = 0.40 ± 0.19 ± 0.12<br>= 3.02 ± 0.54 ± 0.33 |
|                         | $Im[f0] = 0.18 \pm 0.0$                                                                                | $18 \pm 0.06$                     |                      | All $k_{-}$                                  |
| $= \chi^{2}/\text{NDF}$ | $= 357.0/341$ $d0 = 3.57 \pm 0.9$                                                                      | /5 ± 2.84                         |                      |                                              |
| 0                       | 0.1 0.2                                                                                                | 0.3 0                             | 0.1 0.2              | 0.3                                          |
|                         |                                                                                                        |                                   | k* ((                | GeV/c)                                       |
|                         |                                                                                                        |                                   |                      |                                              |

- = fit to non-flat, non-femtoscopic, background Green
- = "raw", uncorrected, fit Black
- Magenta = final fit; momentum resolution and non-flat background corrections applied



 $R_{inv}$  parameters vs  $m_{\tau}$  for (preliminary)  $\Lambda K$  pairs with ALICE results [5] for  $\pi^{ch}\pi^{ch}$ ,  $K^{ch}K^{ch}$ ,  $K^{0}_{s}K^{0}_{s}$ , pp, and  $\overline{pp}$ .  $\Lambda K$ + (with  $\Lambda K$ -) and  $\Lambda K$ - (with  $\Lambda K$ +) are shown separately in the left, and averaged in the right. Statistical (lines) and systematic (boxes) uncertainties are shown.

ALICE



| ⊼K+ 0-10%                                                                                    | $\Lambda \mathbf{K}^- \ \mathbf{\&} \ \bar{\Lambda} \mathbf{K}^+$ | 0-10%<br>10-30%<br>30-50% | $\begin{array}{c} 4.79 \pm 0.79 \pm 1.38 \\ 4.00 \pm 0.72 \pm 0.98 \\ 2.11 \pm 0.52 \pm 0.46 \end{array}$                                                                                  | $\textbf{0.18} \pm \textbf{0.13} \pm \textbf{0.10}$  | $0.45 \pm 0.18 \pm 0.18$                            | -5.29 $\pm$ 2.94 $\pm$ 7.66                         |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| $\begin{split} \lambda &= 0.48 \pm 0.17 \pm 0.15 \\ R &= 4.79 \pm 0.79 \pm 1.38 \end{split}$ | $\Lambda \mathbf{K}^0_S$ & $ar{\Lambda} \mathbf{K}^0_S$           | 0-10%<br>10-30%<br>30-50% | $\begin{array}{c} \textbf{3.02} \pm \textbf{0.54} \pm \textbf{0.33} \\ \textbf{2.27} \pm \textbf{0.41} \pm \textbf{0.32} \\ \textbf{1.67} \pm \textbf{0.30} \pm \textbf{0.28} \end{array}$ | $\textbf{-0.16} \pm \textbf{0.03} \pm \textbf{0.04}$ | $\textbf{0.18} \pm \textbf{0.08} \pm \textbf{0.06}$ | $\textbf{3.57} \pm \textbf{0.95} \pm \textbf{2.84}$ |

- For a given pair and conjugate:
- → Radii shared amongst like centralities
- Only 0-10% shown in figure
- $\rightarrow$  Scattering parameters (f<sub>0</sub>, d<sub>0</sub>) shared amongst all
- → Each correlation function has a unique normalization parameter
- $\Lambda K^{ch}$  analyses
- $\rightarrow$  Each correlation has a unique  $\lambda$  parameter
- $\Lambda K_{s}^{0}$  analyses
- $\rightarrow$  All share a single  $\lambda$  parameter to aid in the fitting process



### 4. Ask me about!

- Residual correlations from feed-down → ex.  $\Sigma^{0}K \rightarrow \Lambda K$ ,  $\Xi^{0(ch)}K \rightarrow \Lambda K$ ,  $\Omega^{ch}K \rightarrow \Lambda K$ , etc.
- New treatment of non-flat background
- → Model with THERMINATOR
- Attempt to eradicate with particle rotation method

### References

[1] R. Lednicky and V. L. Lyuboshitz. Sov. J. Nucl. Phys. 35:770 (1982) [2] S. Koonin. *Phys. Lett. B* 70:43 (1977) [3] S. Pratt, T. Csörgő, and J. Zimányi. *Phys. Rev. C* 42:2646 (1990) [4] R. Lednicky. Phys. Part. Nucl. 40:307 (2009) [5] J Adam et al. [ALICE Collaboration] Phys. Rev. C 92:054908 (2015)  $\Xi^{ch}K^{ch}$  correlation functions for 0-10% centrality. Magenta band is spanned by two Coulomb-only simulated CFs, with  $\lambda$  and R values listed (curves from intermediate values are within band). The  $\Xi$ -K+ data (top left) cannot be described by Coulombonly picture. Is the dip below unity the strong force showing itself?

#### **10.** Summary

- AK femtoscopic analysis presented for Pb-Pb collisions at  $\sqrt{s_{NN}}$  = 2.76 TeV First measurement of  $\Lambda K$  scattering parameters
- Source radii extracted for 0-10%, 10-30% and 30-50% centralities
- $\rightarrow$  Follow approximate  $m_{\tau}$ -scaling observed in other systems
- Striking difference in  $\Lambda K$ + and  $\Lambda K$  correlations observed at low  $k^*$
- Preliminary results shown for  $\Xi^{ch}K^{ch}$  system
- $\rightarrow$  Hope to gain insight to difference in  $\Lambda K$ + and  $\Lambda K$ -
- $\rightarrow$   $\Xi$ -K+ cannot be described by a Coulomb-only picture

Simulated CFs for  $\Xi$ -K+ (top) and  $\Xi$ -K- (bottom) systems. Solid lines represent Coulomb-only simulations, and dashed lines also include the strong interaction. Two sets of scattering parameters are shown.

#### **11. Outlook**

- Finish  $\Lambda K$  analysis and publication
- Finalize treatment of non-flat background
- Model with THERMINATOR
- > or build background from same-event pairs, by rotating one particle by 180° in the transverse plane
- > Continue work on  $\Xi^{ch}K^{ch}$  analysis
- Fitter greatly complicated by Coulomb interaction
- > Use  $\Xi^{ch}K^{ch}$  analysis to help  $\Lambda K$  by either
- → (a) removing all  $\Lambda$ 's from  $\Xi^{ch}$ before fitting, or
- → (b) using  $\Xi^{ch}K^{ch}$  data to quantify feed-down