

BOSE-EINSTEIN CORRELATIONS OF CHARGED HADRONS IN PP COLLISIONS AT 13 TEV

CESAR A. BERNARDES — CESAR.AUGUSTO.BERNARDES@CERN.CH, for the CMS COLLABORATION SPRACE

São Paulo State University (UNESP)

OVERVIEW

Bose-Einstein correlations (BEC) are useful tools to probe the size and shape of the particle emitting region in high-energy collisions. Measurements of the one-dimensional correlation function using three different techniques are presented for minimum-bias (MB) and high-multiplicity (HM) events in proton-proton collisions at $\sqrt{s} = 13$ TeV, collected with the CMS detector. The MB range in this analysis covers track multiplicities up to 80, and HM above that. Comparisons with previous measurements at $\sqrt{s} = 7$ TeV and theoretical predictions are also discussed.

BEC CONCEPT

Observed as an enhancement in the low relative momentum

			Resu	LTS	
۱ſ	_ CMS Preliminary	pp (13 TeV)	_ CMS Preliminary	pp (13 TeV)	

 (q_{inv}) region, BEC are a quantum statistical effect involving identical bosons with similar kinematics, emitted from the system formed in the collision.

$$SR \equiv \frac{\mathcal{S}(q_{inv})}{\mathcal{B}(q_{inv})}$$

- $S(q_{inv})$: normalized q_{inv} distribution of same-sign charged particle pairs from the same event (contains BEC)
- $\mathcal{B}(q_{inv})$: similar to S, but with pairs from different events (mixing technique, no BEC)

Correlation function parameterization for fits

Figure 2: R_{inv} as a function of charged particle multiplicity (left) and $k_{T} = \frac{1}{2} |\vec{k}_{T,1} + \vec{k}_{T,2}|$ (right) for the three methods [4].

pp (13 TeV)

• ϵ : long-range term

ANALYSIS TECHNIQUES

- Double ratios (DR): data SR divided by Monte Carlo (MC) simulation SR (MC using Pythia 6 Z2* tune, without BEC effects) [2]
- Cluster subtraction (CS): background contribution to SR estimated with data SR from same event opposite-sign pairs [2]
- Hybrid cluster subtraction (HCS): similar to CS, but background estimated using convertion factors (opposite-sign to same-sign) from MC simulations [3]

1.3 CMS Simulation Preliminary pp (13 TeV) $1.3 = 19 \le N_{trk}^{offline} \le 21 = 0.2 < k_x < 0.3 GeV$	1.3 CMS Simulation Prelir	$ \begin{array}{ccc} \text{ninary} & \text{pp (13 TeV)} \\ 105 \le N_{trk}^{\text{offline}} \le 109 \\ 0.2 < k_{\tau} < 0.3 \text{ GeV} \end{array} $	ger	non-BEC	con-
$\begin{array}{ccc} & 1.2 \\ & & Pythia 6, +- \\ & & & Gauss Fit, \chi^2 / Ndof = 52 / 48 \\ & & Pythia 6, \pm\pm \end{array}$	 1.2 0 0 1.2 0	x ² / Ndof = 47 / 48	ution	(mainly	reso-

Figure 4: (Left) Comparison with ATLAS measurements [6] using proton-proton collisions at 7 TeV. (Right) $1/R_{inv}^2$ dependence on $m_{\rm T} = \sqrt{m_{\pi}^2 + k_{\rm T}^2}$ for MB and HM ranges [4].

REFERENCES

- [1] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004.
- [2] CMS Collaboration, "Bose-Einstein correlations in pp, pPb, and PbPb collisions at $\sqrt{s_{NN}} = 0.9 7$ TeV", *To appear in Phys. Rev. C* (2017) arXiv:1712.07198.

Figure 1: Single ratios with fits for same- and opposite-sign track pairs in MC (top row) and data (bottom row). The "background" corresponds to the non-BEC estimate from HCS method [4].

- [3] ATLAS Collaboration, "Femtoscopy with identified charged pions in proton-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ATLAS", *Phys. Rev. C* **96** (2017) 064908.
- [4] CMS Collaboration, "Femtoscopic Bose-Einstein correlations of charged hadrons in pp collisions at 13 TeV", *CMS Physics Analysis Summary* **FSQ-15-009** (2018).
- [5] P. T. A. Bzdak, B. Schenke and R. Venugopalan. "Initial-state geometry and the role of hydrodynamics in proton-proton, proton-nucleus, and deuteron-nucleus collisions", *Phys. Rev. C* 87 (2013) 064906.
- [6] ATLAS Collaboration, "Two-Particle Bose-Einstein Correlations in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV with the ATLAS detector", *Eur. Phys. J. C* **75** (2015) 466.

ACKNOWLEDGEMENTS

This material is based upon work supported by the São Paulo Research Foundation (FAPESP) under Grant No. 2013/01907-0.