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Abstract

How does one model di�usion in heavy-ion collisions without breaking
the speed of light?
Fluctuating hydrodynamics [1] - or `noise' - provides a useful framework
for understanding and modeling di�usion of conserved charges in heavy-
ion collisions. The simplest formulations of this framework, however,
are known to produce acausal signal propagation.
Here we explore one way of restoring relativistic causality in a sim-
pli�ed, analytically solvable model of heavy-ion evolution. We show
that the causal formalism a�ects both the density correlations in the
system, as well as experimental observables such as the charge balance
functions [2, 3].

White and Colored Noise

There are two kinds of noise:

1. White noise

(a) Produces ordinary di�usion:
(
∂t +DQ∂

2
x

)
nQ = 0

(b) Pro: simple to implement

(c) Con: acausal signal propagation (v2Q →∞)

2. Colored noise

(a) Produces causal di�usion:
(
∂t + tQ∂

2
t +DQ∂

2
x

)
nQ = 0

(b) Pro: causal (v2Q = DQ/tQ = �nite)

(c) Con: more complicated implementation

Bjørken flow

Bjørken coordinates are related to the standard Cartesian ones by

(t, z) = (τ cosh ξ, τ sinh ξ) , (1)

so that Bjørken �ow, de�ned by

uµ =
(

cosh ξ,~0⊥, sinh ξ
)µ
, (2)

is invariant under longitudinal Lorentz boosts. Derivatives orthogonal
to uµ are taken by the operator

∆µ = ∂µ − uµ (u · ∂) (3)

Electric charge diffusion

Electric charge di�uses in heavy-ion collisions according to the con-
served current density [3]

JµQ = nQu
µ +

(
DQT

χQ

)
∆µ(1 + τQu · ∂)−1

(
nQ
χQT

)
+ Iµ, (4)

where the noise term Iµ assumes the form

Iµ = s(τ)f(ξ, τ)
(

sinh ξ,~0⊥, cosh ξ
)
, (5)

s is the entropy density and f is a dimensionless random variable which
sources �uctuations of electric charge δnQ. The rest of our notation is
de�ned in the Figure caption.
Requiring that ∂µJ

µ
Q = 0 and applying the Fourier transform de�ned

by

X(ξ, τ) =

∫ ∞
∞

dk

2π
eikξX̃(k, τ) (6)

means that

∂2

∂τ2
(τδñ) +

[
1

τQ
− ∂

∂τ
ln

(
χQTDQ

τ

)]
∂

∂τ
(τδñ) +

v2Qk
2

τ2
(τδñ)

= −iks

[
∂f̃

∂τ
+

(
1

τQ
− 1

τ
− ∂

∂τ
ln

(
χQTDQ

τ

))
f̃

]
. (7)

The homogeneous solutions to this equation are given in terms of Kum-
mer's function M(a, b, x) [4]:

ψ±(x) = xλ±−1/2e−xM

(
λ± +

3

2
, 2λ± + 1, x

)
, (8)

with ψ = τδñ, x = τ/τQ, and λ± = ±
√

1
4 − v

2
Qk

2. Additionally, the

signal propagation speed v2Q = DQ/τQ, meaning that we can obtain

(acausal) white noise from our results by taking the limit τQ → 0+,
corresponding to v2Q →∞.

Correlation Functions and Noise

The colored noise source f �uctuates on average to zero,
〈
f̃(τ, k)

〉
= 0,

and satis�es a modi�ed form of the �uctuation-dissipation theorem:

〈(
1 + τQ

∂

∂τ1

)
f̃ (τ1, k1)

(
1 + τQ

∂

∂τ2

)
f̃ (τ2, k2)

〉

= N(τ1)δ(τ1 − τ2)δ(k1 + k2); N(τ) =
4πDQT (τ)

AτχQ(τ)s2(τ)
. (9)

Equivalently, for a system created at τ0,〈
f̃ (τ1, k1) f̃ (τ2, k2)

〉
=

2πδ(k1 + k2)

τ2Q exp (|τ ′2 − τ ′1|/τQ)
(10)

×
∫ min(τ ′1,τ

′
2)

τ0

dτN(τ)e−2[min(τ ′1,τ
′
2)−τ ]/τQ
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Figure: (Left column) - The evolution of density correlations, at a �xed instant in time τ , for various values of vQ. For �nite vQ,
the correlator contains wavefronts whose interpretation is illustrated schematically in the diagrams below; the outer set of wavefronts
represents the �light cone" of a single �uctuation, while the inner wavefronts represent the correlations of two �uctuations occurring a
distance ξs apart. Here ξs ≡ vQ ln (τ/τ0) ≈ 0.266. Since white noise corresponds to vQ →∞, it does not any generate wavefronts.
(Right column) - Charge balance functions for various values of vQ. With vQ → ∞, white noise corresponds to maximally e�cient
di�usion and generates the widest balance functions. Restoring relativistic causality leads to less e�cient di�usion, narrow balance
functions, and enhancement of charged hadron pairs near small momentum rapidity separation ∆y.
Notation: Quantities with a `Q' subscript describe electric charge. This includes DQ (the di�usion coe�cient), τQ (the noise

timescale), vQ (the speed of propagation), nQ (the charge density), and χQ (the charge susceptibility). The system temperature is given
by T .

Density Correlations

Density correlations are determined by

〈δñ(k1, τf )δñ(k2, τf )〉

=
1

τ2f

∫ τf

τ0

dτ ′1s(τ
′
1)G̃(k1; τf , τ

′
1)

∫ τf

τ0

dτ ′2s(τ
′
2)G̃(k2; τf , τ

′
2)

×
〈
f̃ (τ ′1, k1) f̃ (τ ′2, k2)

〉
, (11)

where the Green's function G̃ (k; τ1, τ2) is a linear combination of the
ψ± given above.

Charge Balance Functions

We determine the single-particle spectra from the Cooper-Frye proce-
dure:

dN

dy
=

dsAτf
(2π)3

∫
dξ cosh(y − ξ)

∫
d2p⊥m⊥

× exp [− (m⊥ cosh(y − ξ)− µ) /Tf ] ,

where ds is the spin degeneracy, A the transverse area of the system,
and τf the proper time de�ning the freeze-out surface. Then the charge

balance function is given by [2]

B(∆y) ≡
〈
δ

(
dN

dy1

)
δ

(
dN

dy2

)〉〈
dN

dy

〉−1
, (12)

where

δ

(
dN

dy

)
≡ dN

dy
−
〈
dN

dy

〉
(13)

AdS/CFT and colored noise

The AdS/CFT correspondence is often used to guide the choice of
transport coe�cients in the strongly coupled sector of QCD (e.g., the
famous KSS bound on η/s of 1/4π). Matching the �uctuating current
density used above onto the density motivated by holographic consid-
erations [5, 6] leads to the estimates

τQ ∼ DQ ∼
1

2πT
=⇒ vQ ∼ 1 (14)

The condition on DQ is a rough approximation of the relevant lattice
data [7], and in general, these parameters all depend on τ in a heavy-ion
collision.

For simplicity, in this study both DQ and τQ are chosen to be indepen-
dent of τ . We take vQ as a free parameter and use this to determine
the corresponding value of τQ, where DQ is taken from the lattice and
averaged over the relevant temperature interval T ∼ 150− 350 MeV.

We also take χQ = 2T 2/3.
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Conclusions

We have focused in this study on the e�ects of relativistic causality, in
the form of colored hydrodynamic �uctuations, on the description of
di�usion and charge balance functions in a simple, analytically solvable
model of heavy-ion collisions.

We �nd results which are intuitively very reasonable: imposing a rel-
ativistic �speed limit" reduces the e�ciency of the di�usive mecha-
nism, thereby narrowing balance functions and enhancing the number
of charge pairs at small rapidity separation. We therefore expect that
our results will be important both for qualitative and quantitative un-
derstanding of heavy-ion experimental data.


