Pion induced reaction with carbon and polyethylene targets obtained by HADES in 2014

Pablo Rodríguez Ramos, Nuclear Physics Institute, Czech Technical University in Prague, Czeckia, for the HADES collaboration

Results for \(\pi^+N \rightarrow e^+e^-N \)

In the summer of 2014, HADES conducted measurements with secondary pion-beam using different targets (PE) and carbon. The program is devoted to measure di-lepton radiation from baryonic resonances. In particular, we investigated a sub-threshold coupling of p to baryonic resonances in the second resonance region (e.g. N(1520)).

Cocktail Source for reaction \(\pi^- + PE \) target

<table>
<thead>
<tr>
<th>Channel</th>
<th>(n_{[nb]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Delta) Dalitz): from (a^0 - p \rightarrow n\Delta))</td>
<td>9.2</td>
</tr>
<tr>
<td>Single ((\pi^0) Dalitz): from (\gamma \rightarrow \pi^0)</td>
<td>2.18±3.6</td>
</tr>
<tr>
<td>(\gamma \rightarrow \pi^0 \pi^0) ((\gamma = \pi^0))</td>
<td>3.6±7</td>
</tr>
<tr>
<td>(\Delta) Dalitz: from (a^0 \rightarrow n\Delta)</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Inclusive Invariant and Missing Mass \(e^+e^- \) for \(\pi^- + PE \)

Using missing mass cuts between \([900-1010]\) MeV/c \(e^+e^- \) events from the reaction:

\[\pi^+N \rightarrow e^+e^-N \]

Using missing mass cuts between \([900-1010]\) MeV/c events from the reaction are identified:

Conclusion & Outlook

Using missing mass cuts we identified the events from the reaction \(\pi^+N \rightarrow e^+e^-N \). It is shown that \(e^+e^- \) yield of invariant mass above 350 MeV/c^2 region corresponding to the mass missing between \([900-1010]\) MeV/c. The HADES data measured in the same experiment and using the Strict Vector Dominance Model (VDM). The cut at 600 MeV/c is due to our model converting measured \(e^+e^- \) yield, for the decay via intermediate \(\rho^- \) so such cut-off is expected.

References

Acknowledgments: This work was supported by EU Contract No. HP3282386, EU OP VVV CZ.02.1.01/0.0/16001/0101677.