Dilepton production and resonance properties within a new hadronic transport approach

Jan Staudenmaier¹,² & Hannah Petersen¹,²,³

¹ 1 Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt, Germany
² 2 Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
³ 3 GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany

Motivation
- only electromagnetic interaction: clean probe for hot and dense matter
- extract medium properties and medium modifications over whole lifetime of collision
- probe for resonance description and properties orthogonal to hadronic observables

SMASH
- new hadronic transport approach for dilute non-equilibrium stages of heavy-ion collisions and low energy collisions
 \[p^\mu \partial_\mu f_i(x, p) + m_i F^{\alpha\beta} \partial_\alpha \partial_\beta f_i(x, p) = C_{\text{coll}}^i \]
- features: geometric collision criterion, Test Particle Method, Mean-Field potentials, Fermi motion, Pauli blocking
- degrees of freedom: all well-known particles from PDG up to a mass of 2 GeV
- goal: standard reference for hadronic system with vacuum properties

Dilepton Production in SMASH
- dileptons produced by resonance decays
- direct and Dalitz dilepton decay channels
- continuously perform dilepton decays and weight them by taking their decay probability into account (better statistics)
- more details and results in [2]

Vacuum Transport
- di-electron invariant mass spectra for elementary (pp) and small (CC) systems agree with HADES data
- solid baseline for resonance description with Breit-Wigner spectral function and collisional broadening
- contributions for directs decays of all vector mesons below hadronic thresholds

Coarse - Graining
- extraction of T and \(\mu_B \) from space-time cells (routine adapted from S. Endres [3])
- thermal dilepton emission from cells including medium-modified spectral function for vector mesons
- for larger systems (ArKCl) at low energies dilepton invariant mass spectrum sensitive to medium modifications

Hybrid Approach
- study the effect of rescattering in the late dilute stages on the different dilepton observables (dN/dM, dN/dp, \(\nu_2 \))
- hybrid approach: combine dilepton radiation from hydrodynamics (MUSIC) and hadronic afterburner (SMASH)
- dilepton emission from hydro stage by G. Vujanovic [5]
- first result: di-electron \(<p> \) increases, when employing hadronic afterburner

References

Acknowledgements and Contact
This work was made possible thanks to funding from the Helmholtz Young Investigator Group VH-NG-822 from the Helmholtz Association and GSI, and supported by the Helmholtz International Center for the Facility for Antiproton and Ion Research (HIC for FAIR) within the framework of the Landes-Offensive zur Entwicklung Wissenschaftlich-Elektronischer Excellence (LOEWE) program of the State of Hesse. J.S. and J.P. acknowledge support by the Deutsche Forschungs- gemeinschaft (DFG) through the grant CRC-TR 211 "Strong-interaction matter under extreme conditions". Computational resources have been provided by the Center for Scientific Computing (CSC) at the Goethe-University of Frankfurt and the GreenCube at GSI.

J. Staudenmaier, staudenmaier@fias.uni-frankfurt.de