EFFECT OF QUANTUM CORRECTIONS ON A REALISTIC NUCLEAR MATTER EOS AND ON COMPACT STAR OBSERVABLES

Péter Pósfay1,2, Antal Jakovác2, Gergely G. Barnaföldi1
posfay.peter@wigner.mta.hu

Wigner Research Centre for Physics, 29-33 Konkoly-Thege Miklós út, 1121 Budapest, Hungary
1Közép-Lengyel Intelligencia és Statisztika Tani Kutatási és Képzési Intézet, Budapest, Hungary
2Budapest University of Technology and Economics, Institute of Theoretical Physics, Budapest, Hungary

HOW TO USE NEUTRON STAR DATA TO TEST MODELS OF NUCLEAR MATTER?

Masquerade problem: different models for EoS produce similar neutron stars

Can the same model provide different EOS and neutron star parameters based on the method of solutions?

INTERACTING FERMI-GAS MODEL

\[U_{\text{Fermi}} = \frac{k^4}{12\pi^2} \left(\frac{\omega}{\omega_B} \right)^3 \]

Fermions: \(m=0 \), Yukawa-coupling generates mass for fermions
Bosons: the potential contains self interaction terms
We study the scale dependence of the potential only!!

FUNCTIONAL RENORMALIZATION GROUP METHOD

\[\beta_k = \frac{1}{2} \int d^{D-1}p \langle \sigma^2 \rangle \]

Non-perturbative description
Continuous transition from microscopic to macroscopic scale

THE WETTERICH-EQUATION FOR THE FERMI-GAS MODEL:

\[\beta_k = \frac{1}{2} \int d^{D-1}p \langle \sigma^2 \rangle \]

Wetterich equation determines the couplings
Different EOS - Neutron Star

SOLUTION METHOD

At zero temperature, the Fermi-Gas distribution becomes a step function and divides the \(k^2 \)-plane into two different regions. There is a different equation corresponding to each region which has to be solved separately, but they have to match at the boundary.

We have two equations for the two values of the step function each valid on different domain

SOLUTION IN STEPS

1) Fix the high scale couplings in the theory at scale \(\Lambda \).
2) Integrate the equation which is valid outside of the Fermi surface.
3) Calculate the initial conditions for the equation inside the Fermi surface.
4) Integrate the equation which is valid below the Fermi surface.

RESULTS

Nuclear matter properties

- The phase diagram of the interacting Fermi gas in different approximations shows the type of the phase transition in the system when the couplings are specified.
- The FRG and one loop calculations are very close and both of them are different from the mean field result. FRG is a relevant improvement.
- FRG makes the phase transition smoother: first order in mean field turns into second order in the FRG calculation.
- Comparison of the interacting Fermi gas EOS in different approximations to other models: (SQM3, WFF1, GM13)
- Consistency: at high energies they approach SQM3.
- The mean field, one loop and exact calculations gives very similar equation of state, despite their different results in the phase diagram.
- The compressibility of the fermi gas model in different approximations.
- The high order FRG calculation gives approximately 8% difference compared to the meanfield.
- One loop is not as good approximation as it was in the case of the phase diagram.

Neutron star properties

- M-R diagram corresponding to the mean field and high order calculation.
- The difference in M and \(\Lambda \) compared to mean field is plotted on the sides.
- The mass difference is the largest at the highest radius stars.
- The radius difference is the largest at high mass stars.
- The two curves intersect at two points at small density and high density.
- At low density fluctuations does not play a relevant role.
- At high density the renormalization conditions gives a small difference
- The mass compactness diagram of the models compared to other EoS.
- Timing measurements can predict the compactness of neutron stars.
- Grey band: Predicted sensitivity of the NICER experiment in compactness measurement (5%).
- The experiments are close to the threshold where they can differentiate between different methods of quantum calculations.

doi:10.1017/pasa.2018.14

TAKE-HOME MESSAGE

1. Neutron star and nuclear matter parameters corresponding to a given model depend on the method of calculating quantum fluctuations
2. Mean field calculations work well for calculating the mass and radius of neutron stars considering the current sensitivity of experiments
3. High order calculations are needed in the case of nuclear matter parameters
4. We developed a method to calculate quantum fluctuations at zero temperature and finite chemical potential in FRG LPA (local potential approximation)