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Abstract
Transport coefficients of quark plasma are the
key inputs in the hydrodynamic description of
heavy-ion collisions. We compute the four first-
order transport coefficients of two-flavor quark
plasma from the Kubo formalism at finite tem-
peratures and densities. One of our key results
is that the bulk viscosity exceeds the shear vis-
cosity close to the chiral phase transition line.
We find that the Wiedemann-Franz law for the
ratio κ/σ does not hold, and we conjecture on
the basis of the uncertainty principle a lower
bound for the ratio κT/cV ≥ ~c2/18kB , where
cV is the heat capacity per unit volume.

Kubo formulas
The first-order transport coefficients are given
by the following Green-Kubo formulas
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is the two-point equilibrium retarded Green’s
function; ĥµ and ĵµ are the heat current and
electric current, respectively; π̂µν is the shear
stress tensor and p̂∗ - the bulk viscous pressure.

Model and correlation functions
We use the two-flavor Nambu–Jona-Lasinio
model with scalar and pseudoscalar interaction

L = ψ̄(i/∂ −m0)ψ +
G

2

[
(ψ̄ψ)2 + (ψ̄iγ5τψ)2

]
,

Two-point correlators are given by an infinite
series of Feynman diagrams, where vertex cor-
rections are suppressed by a factor of 1/Nc

η, κ, σ are given by single-loop diagrams,
whereas the bulk viscosity ζ includes an infinite
series of multi-loop diagrams. All diagrams
should be evaluated with full quark propagators.

Quark and meson masses
The dynamically generated (constituent) quark
mass is found from the gap equation

The meson propagators are obtained from the
Bethe-Salpeter equation
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Quark spectral function
Dominant processes in the quark self-energy
are the meson decay into quark-antiquark pair
and its inverse process (Γπ = iγ5τ , Γσ = 1)

Quark self-energy and spectral function have
three Lorentz components

Σ(p0,p) = mΣs + p0γ0Σ0 − pγΣv,

A(p0,p) = −(mAs + p0γ0A0 − pγAv)/π.
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Numerical results for transport coefficients
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• κ, σ and η show a universal dependence on the scaled temperature T/TM.
• At high temperatures they scale as κ ∝ T−3, σ ∝ T−6, η ∝ T−6, and η/s ∝ T−9.
• At high temperatures the ratio η/s undershoots the KSS bound 1/4π.
• We find the following relation between the conductivities κ/σ = 9h2/10παT ' π3T 3/5αµ2.
• From the uncertainty principle we conjecture a lower bound for the ratio κT/cV ≥ ~c2/18kB .
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• At low temperatures the bulk viscosity is dominated by multi-loop contributions ζ1 and ζ2.
• In this regime the bulk viscosity dominates the shear viscosity by factors 5÷ 20.
• At high temperatures and densities one-loop contribution ζ0 ∝ T 3 becomes dominant.
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