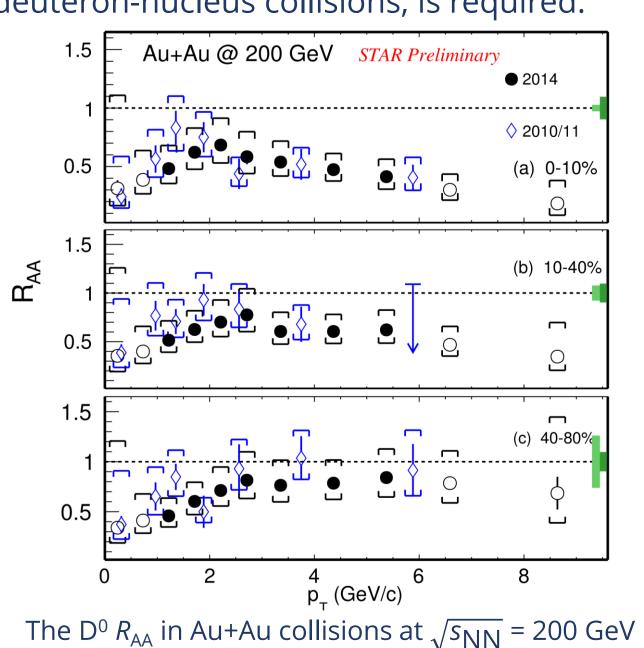
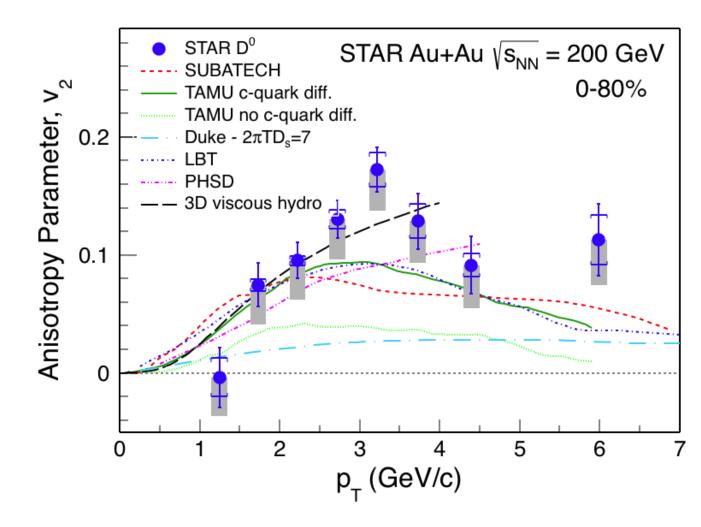

Measurements of D⁰ Production in d+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Experiment

Lukáš Kramárik, for the STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague


Abstract


Charm quarks possess large masses, and thus can serve as penetrating probes to study the intrinsic properties of the hot medium created in heavy-ion collisions. However, Cold Nuclear Matter (CNM) effects, such as the change in the parton distribution function between a free nucleon and a nucleus, also affect the charm quark production in nuclear collisions with respect to p+p collisions. These effects can be measured in small systems such as p+A and d+A collisions, where only the CNM effects are present. Furthermore, a sizable azimuthal anisotropy (v₂) has been observed in both nucleusnucleus collisions and small-system collisions of high multiplicities. To better understand the origin of the flow-like signal in small-system collisions, it is important to study charm quark azimuthal anisotropy in these systems.

In this poster, we report on the first measurements of D⁰ production with the Heavy Flavor Tracker in d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Motivation

- A mass ordering of the parton energy loss in the hot medium is predicted, i.e. heavy-flavor quarks are expected to lose less energy than light-flavor quarks.
 - The nuclear modification factor R_{AA} of open charm mesons exhibits **strong suppression** at high p_T in Au+Au collisions, indicating substantial energy loss of charm quarks in the medium.
- The collective behavior of charm quarks reflects the degree of thermalization of charm quarks in the medium, and is related to the bulk properties of the QGP.
- For quantitative studies of the QGP properties (e.g. charm transport coefficients), understanding of the cold nuclear matter (CNM) effects, accessed via proton-nucleus or deuteron-nucleus collisions, is required.

The elliptic anisotropy v_2 for D^0 mesons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to theoretical calculations [1]

STAR Detector

- STAR has excellent tracking and charged particles identification at mid-rapidity ($|\eta|$ < 1) with full azimuthal coverage.
- Most of the subsystems are immersed in a 0.5 T solenoidal magnetic field.

Time Projection Chamber (TPC):

 main tracking device, momentum determination, particle identification via energy loss (d*E*/d*x*)

Time Of Flight (TOF):

• particle identification via velocity (β)

Heavy Flavor Tracker (HFT):

- inner tracking system composed of three silicon detectors - the PIXEL made of two layers of Monolithic Active Pixel Sensors, Intermediate Silicon Tracker (IST) and Silicon Strip Detector (SSD)
- excellent DCA_{xv} and DCA_z resolution: 30 μ m at $p_T = 1.5 \text{ GeV/}c$
- installed for data taking in years 2014-2016

DCA_{v0ToPV}

Analysis Method

- About 350 million d+Au events at $\sqrt{s_{NN}}$ = 200 GeV recorded in 2016 are used for this analysis.
- Hadronic decay channels are used for D⁰ reconstruction ($\overline{D^0} \to K^+\pi^-$, D⁰ $\to K^-\pi^+$), whose branching ratio is (3.89 ± 0.04) %.

Event selection:

- Vertex position in beam direction $|V_{\tau}|$ < 6 cm
- Correlation of primary vertices reconstructed using TPC and $VPD |V_{z,VPD} - V_{z,TPC}| < 3 cm$

Track selection:

- Hits in both PIXEL layers and at least one of the IST or SSD layer
- At least 15 space points in the TPC for track reconstruction
- Track pseudorapidity $|\eta| < 1$

Particle identification:

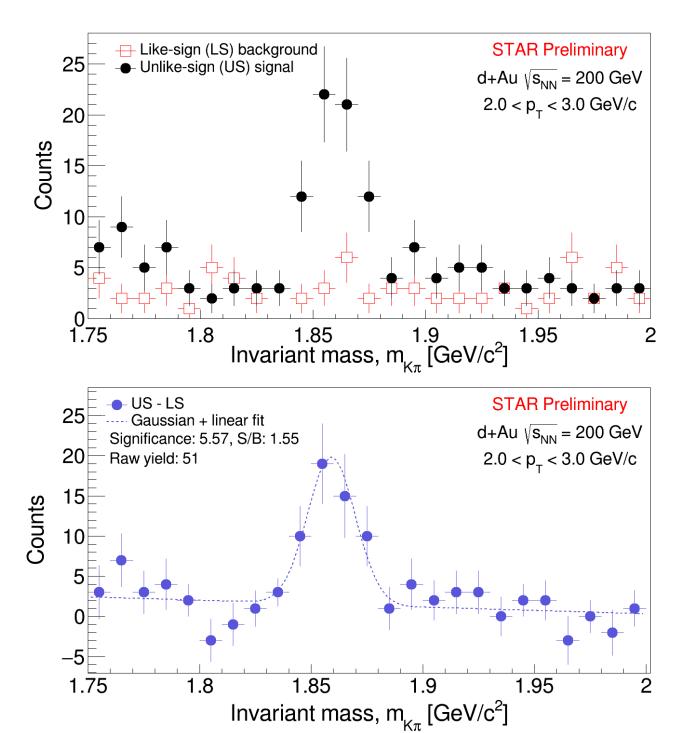
- Daughter $p_T > 0.15 \text{ GeV/}c$
- TPC: $|n\sigma_{\pi}| < 3$, $|n\sigma_{K}| < 2$
- TOF: matching for pions, $|1/\beta_{\text{theo.}} 1/\beta_{\text{meas.}}| < 0.03$ for kaons

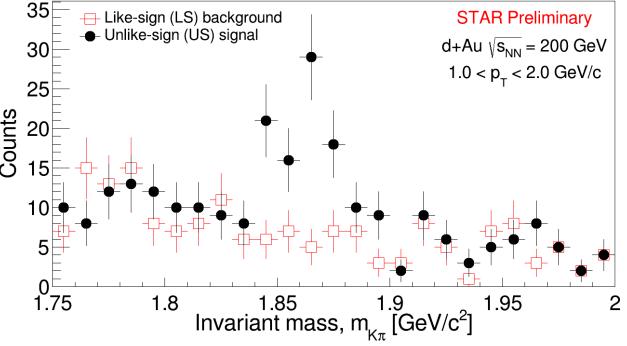
• Topological cuts for D⁰ reconstruction:

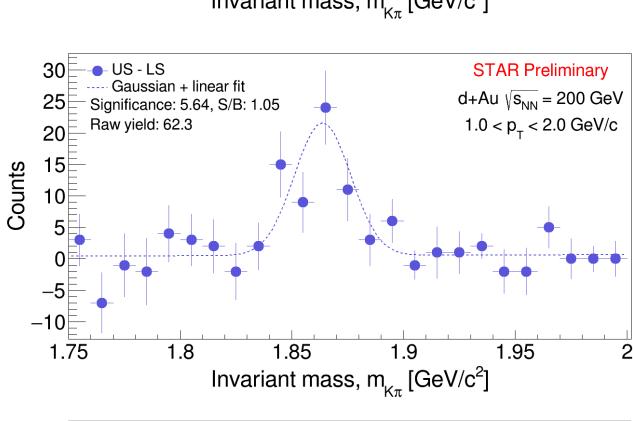
- Optimized separately for different p_T intervals using Toolkit for Multivariate Data Analysis package [2].
- Used topological properties of D⁰ decays are:
 - 1. decay length
 - 2. daughter DCA_{K, π} to primary vertex (PV)
 - 3. DCA₁₂ between daughter particles
 - 4. pointing angle θ between reconstructed D⁰ momentum and decay length vector
 - 5. reconstructed D⁰ candidate DCA_{v0ToPV} to primary vertex

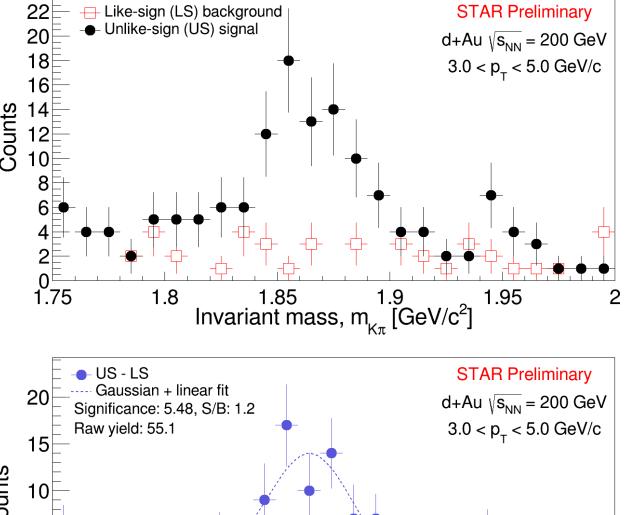
Tuning Topological Cuts

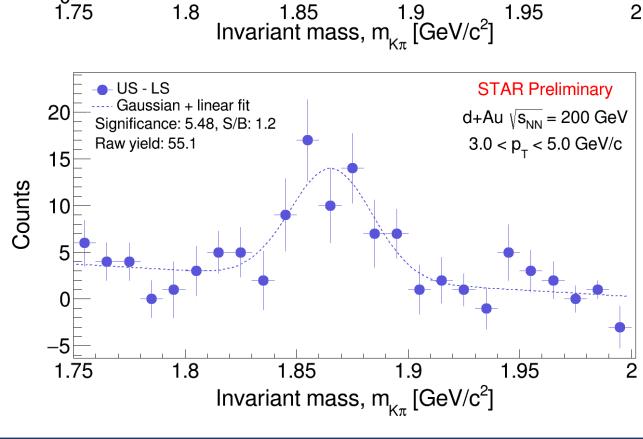
- The TMVA **Rectangular Cut** optimization was used.
 - This mode randomly samples different cut combinations and selects the one with the largest background rejection for a given signal efficiency.
- Cuts with the greatest significance $S/\sqrt{S+B}$ are used for raw yield extraction.


Signal sample for training:


- D⁰ decay is simulated using PYTHIA
- Momenta and DCA of daughter particles are smeared in accordance to the detector response.
- Background sample for training is taken directly from data:
 - wrong (like) sign pairs at the D⁰ mass region,
 - correct (unlike) sign pairs outside of the D⁰ mass region.




D⁰ Raw Yields


- Background is estimated via wrong (like) sign combinations of daughter particles ($K^-\pi^-$, $K^+\pi^+$) and is subtracted from the correct (unlike) sign combinations.
- Invariant mass distribution of unlike-sign pairs after background subtraction is fitted by the combination of a Gaussian function for signal function for the residual and a linear background.
- Yield is extracted using the bin-counting **method** in the $\pm 3~\sigma$ region around the mean of the fitted Gaussian function with residual background subtracted.
- Intervals of pair p_T used for analysis:
 - 1–2, 2–3, 3–5 GeV/*c*
- Significance larger than 5 is achieved in all p_T

Conclusions and Outlook

- D^o mesons are reconstructed via their hadronic decay channels in d+Au collisions with excellent precision thanks to the Heavy Flavor Tracker at the STAR experiment.
- Evaluations of the efficiency correction on D⁰ raw yield and systematic uncertainties are under way, to determine the **nuclear modification factor** R_{dAu} and the **elliptic anisotropy** v_2 in d+Au collisions.

References

[1] L. Adamczyk et al. (STAR Collaboration), PRL 118 (2017) 212301. [2] A. Hocker et al., PoS ACAT, 040 (2007).

Acknowledgement

This work was also supported by the grants LM2015054 and CZ.02.1.01/0.0/0.0/16_013/0001569 (Brookhaven National Laboratory - participation of the Czech Republic) of Ministry of Education, Youth and Sports of the Czech Republic.

