
Classical-statistical lattice simulations:
• SU("#) gauge theory with "# = 2 in temporal '( = 0 gauge
• large occupancies * + ∼ Λ ≫ 1à dynamics approx. by class. EOM

Computation of spectral function 0:
• perturb system at 1 = 12345 with a source 67 1, 9 ∼ :;7<9 =(1 − 12345)

(with restored Gauss law and in Coulomb gauge ?@'@ = 0 at 12345)
• employ linear response theory: split gauge field '@ 1, 9 ↦ '@ 1, 9 +

C@ 1, 9 , solve newly developed linearized equations for C@ 1, 9 [3]
• extract retarded propagator from C@ 1, 7 = ∫ E1FGH,@I 1, 1

F, 7 6I 1, 7

• obtain spectral function from GH,@I = J 1 − 1′ L@I
• use isotropy and homogeneity to improve the statistical uncertainty
• transverse polarization:     LM(7) = N@

∗ 7 L@I(7)NI(7) with P ⊥ 7
longitudinal polarization:    LR 7 = +@ L

@I 7 +I
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Strong Yang-Mills fields appear in: 
• weak coupling descriptions of QGP and heavy-ion collisions 
• initial stages with * ∼ 1/TU for + ≪ WX
• infrared tail * ∼ Y/Z of thermal Bose distribution (Z ≪ Y) 

Their spectral properties? Controlled way to study initial stages?

Hard Thermal Loop (HTL) formalism [1] :
• description; scale separation between highly occupied soft modes 
+ ∼ [ and hard modes + ∼ Λ needed; expansion in ⁄[ Λ ≪ 1.

Our objectives: 
• develop non-perturbative approach not based on ⁄[ Λ ≪ 1 to

obtain spectral and statistical functions L(1, Z, +) and ](1, Z, +)
• quantify to what extent HTL at LO is a good approx. of soft modes
• measure quantities exceeding LO HTL that are hard to compute 

diagrammatically. Application: damping rates ^M/R(+).
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Based on: arXiv:1804.01966

Theory

Conclusion
a. We developed a non-perturbative numerical approach based on 

classical lattice simulations, linearized equations and linear response 
theory to extract the spectral function in over-occupied gauge systems.

b. HTL at LO can describe many observables but important deviations

also found; for the first time, measurement of damping rates ^M/R(+)

c. Outlook: We aim to use these techniques to study anisotropic, 
expanding systems for initial stages in heavy-ion collisions.  
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LM as function of Δ1 = 1 − 1′ (left) 
or Z (right) at late time 12345 ≫ Δ1

• black dashed lines: HTL at LO
• for |Z| ≤ +:  Landau cut

• damped oscillations, Lorentz 
peaks:  existence of quasi-

particles with dispersion ZM(+)
and damping rate ^M(+). 

LR is similar (shown in paper)

• but for + ≳ [ ≈ 0.15 W, 
quasiparticle peak suppressed

• Landau cut dominates then

• extracted from peak position
• HTL predictions [1]:  ZM,Rghi(+)
• plasmon frequency Z2j = Z + = 0 ,

asymptotic mass [k (gap at + → ∞),
we get ⁄[k Z2j = 0.96 ± 0.03

vs. HTL at LO: ⁄2 3 ≈ 0.82 . 

]@I(1, 1
F, 7) = '@ 1, 7 'I

∗ (1F, 7) . 

Observation: (shown in paper)

• ⁄?|?|}] ?|L = ?|?|}] 1, Δ1 = 0, +

à Z-dependence of ?|?|}] as in ?|L

?|?|}] ~1 = 0 deviates from HTL:
• HTL expectations as gray bands 

(Y∗ ≈ ⁄∫ dÄ+ *U 2∫ dÄ+ */+.)

• enhanced ?|?|}]M, R for + ≲ [ visible

Far-from-equilibrium, isotropic, overoccupied * ∼ 1/TU :

Studied system

Universal scaling exponents 
Ç = −4/7 and Ö = −1/7

• undergoes a cascade of energy to 
the UV in a self-similar regime 
* +, 1 = 1Ü *á 1

à+ (see, e.g., [2])
• insensitive to details of the over-

occupied initial condition
• scale separation grows with time as 

[/Λ ∼ (W1)âU/ä ([: mass, Λ: hard 
scale, W: constant scale) 

• à HTL should be applicable.
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• extracted by fitting to a damped 
oscillator

• HTL prediction [1]:  ^ghi + = 0

• ^ is beyond HTL at LO, it may 
contain non-perturbative 
contributions (magnetic scale)

• “isotropic” ^M ≈ ^R for + ≲ [.
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