

Spectral function for overoccupied gluodynamics from real-time lattice simulations

European Research Council

Project: CGCglasmaQGP

Presenter's contact: kirill.boguslavski@jyu.fi

<u>K. Boguslavski, 1 A. Kurkela, 2,3 T. Lappi, 1,4 and J. Peuron 1</u>

¹ Department of Physics, University of Jyväskylä, Finland ² Theoretical Physics Department, CERN, Geneva, Switzerland

³ Faculty of Science and Technology, University of Stavanger, Norway

⁴ Helsinki Institute of Physics, University of Helsinki, Finland

Based on: arXiv:1804.01966

Physics motivation

Strong Yang-Mills fields appear in:

- weak coupling descriptions of QGP and heavy-ion collisions \bullet
- initial stages with $f \sim 1/g^2$ for $p \ll Q_s$ ullet
- infrared tail $f \sim T/\omega$ of thermal Bose distribution ($\omega \ll T$) •

Spectral function ρ

Transverse spectral function: ρ_T

-2

 ρ_T as function of $\Delta t = t - t'$ (left)

or ω (right) at late time $t_{pert} \gg \Delta t$

• black dashed lines: HTL at LO

Their spectral properties? Controlled way to study initial stages?

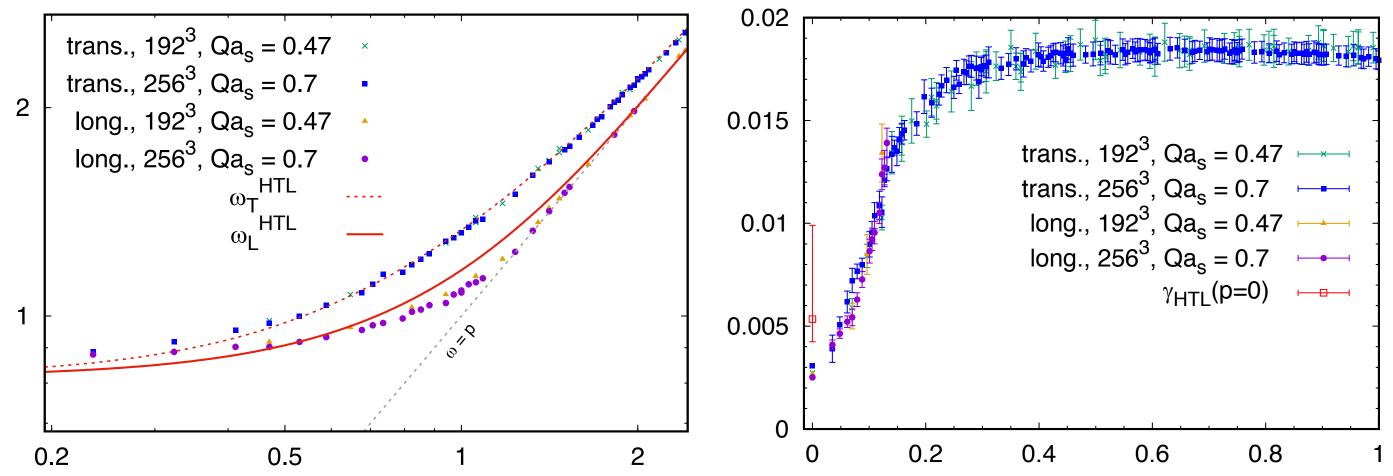
Hard Thermal Loop (HTL) formalism [1] :

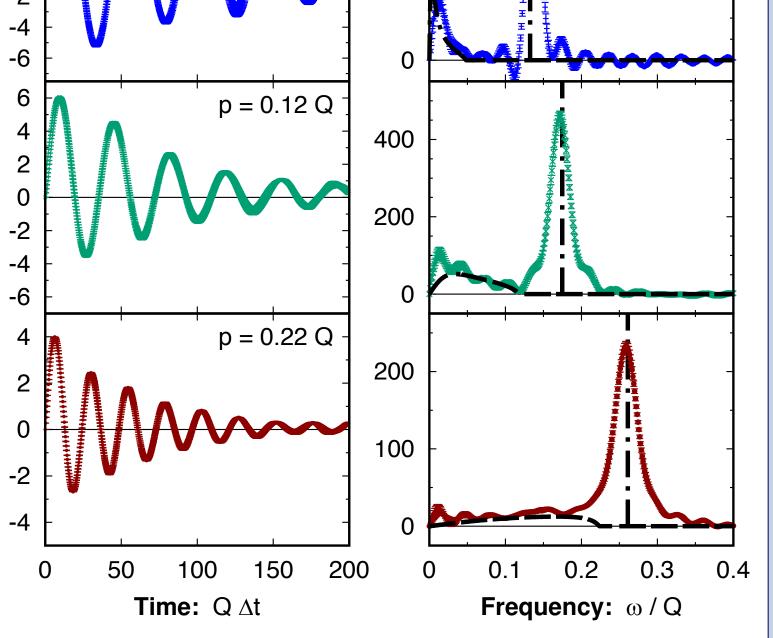
• description; scale separation between highly occupied soft modes $p \sim m$ and hard modes $p \sim \Lambda$ needed; expansion in $m/\Lambda \ll 1$.

Our objectives:

- develop non-perturbative approach not based on $m/\Lambda \ll 1$ to obtain spectral and statistical functions $\rho(t, \omega, p)$ and $F(t, \omega, p)$
- quantify to what extent HTL at LO is a good approx. of soft modes
- measure quantities exceeding LO HTL that are hard to compute diagrammatically. <u>Application</u>: damping rates $\gamma_{T/L}(p)$.

Studied system


Far-from-equilibrium, isotropic, overoccupied $f \sim 1/g^2$:

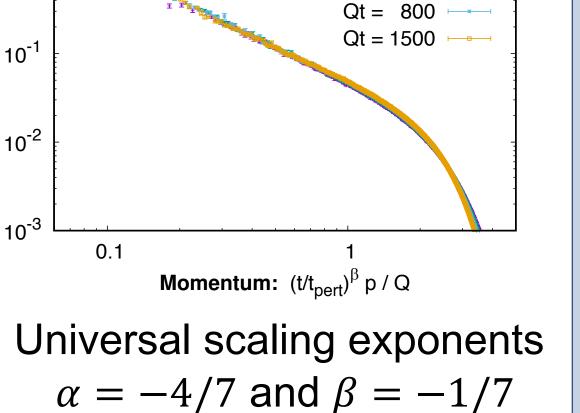

Distribution: $(t/t_{pert})^{-\alpha}g^2 f$ undergoes a cascade of energy to the UV in a self-similar regime $f(p,t) = t^{\alpha} f_{S}(t^{\beta}p)$ (see, e.g., [2])

- for $|\omega| \le p$: Landau cut \bullet
- damped oscillations, Lorentz peaks: existence of quasi-<u>particles</u> with dispersion $\omega_T(p)$ and damping rate $\gamma_T(p)$.
- ρ_L is similar (shown in paper)
- but for $p \gtrsim m \approx 0.15 Q$, quasiparticle peak suppressed
- Landau cut dominates then

Extracted dispersion: $\omega(p) / m$

800

- insensitive to details of the overoccupied initial condition
- scale separation grows with time as $m/\Lambda \sim (Qt)^{-2/7}$ (m: mass, Λ : hard scale, Q: constant scale)
- \rightarrow HTL should be applicable.



Classical-statistical lattice simulations:

- $SU(N_c)$ gauge theory with $N_c = 2$ in temporal $A_0 = 0$ gauge
- large occupancies $f(p \sim \Lambda) \gg 1 \rightarrow$ dynamics approx. by class. EOM

Computation of spectral function ρ :

- perturb system at $t = t_{pert}$ with a source $j_p(t, x) \sim e^{ip \cdot x} \delta(t t_{pert})$ (with restored Gauss law and in Coulomb gauge $\partial_i A_i = 0$ at t_{pert})
- employ *linear response theory*: split gauge field $A_i(t, x) \mapsto A_i(t, x) +$ • $a_i(t, \mathbf{x})$, solve newly developed linearized equations for $a_i(t, \mathbf{x})$ [3]

Qt = 250

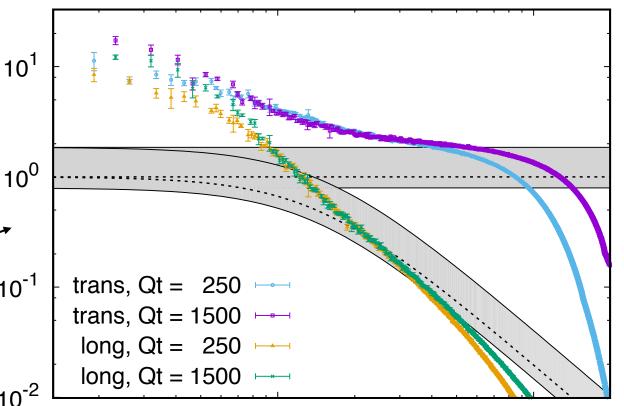
Qt = 400

Momentum: p / m

- extracted from peak position
- HTL predictions [1]: $\omega_{T,L}^{\text{HTL}}(p)$
- plasmon frequency $\omega_{\rm pl} = \omega(p = 0)$, asymptotic mass m_{∞} (gap at $p \to \infty$), • we get $m_{\infty}/\omega_{\rm pl} = 0.96 \pm 0.03$

(vs. HTL at LO: $\sqrt{2/3} \approx 0.82$).

Momentum: p/Q


- extracted by fitting to a damped oscillator
- HTL prediction [1]: $\gamma_{\rm HTL}(p=0)$ γ is beyond HTL at LO, it may contain non-perturbative contributions (magnetic scale)
- "isotropic" $\gamma_T \approx \gamma_L$ for $p \leq m$.

Statistical correlation function F

 $F_{jk}(t,t',\boldsymbol{p}) = \langle A_j(t,\boldsymbol{p})A_k^*(t',\boldsymbol{p}) \rangle.$

- **Observation:** (shown in paper) • $\partial_t \partial_{t'} F / \partial_t \rho = \partial_t \partial_{t'} F(t, \Delta t = 0, p)$ $\rightarrow \omega$ -dependence of $\partial_t \partial_{t'} F$ as in $\partial_t \rho$
- $\partial_t \partial_{t'} F(\Delta t = 0)$ deviates from HTL:
- HTL expectations as gray bands $(T_* \approx \int \mathrm{d}^3 p f^2 / 2 \int \mathrm{d}^3 p f/p.)$

Ratio: $(\partial_t \partial_{t'} F / \partial_t \rho) / T_*$

Momentum: p/m

10

- extract retarded propagator from $a_i(t, \mathbf{p}) = \int dt' G_{R,ik}(t, t', \mathbf{p}) j^k(t, \mathbf{p})$
- obtain spectral function from $G_{R,ik} = \theta(t t') \rho_{ik}$
- use isotropy and homogeneity to improve the statistical uncertainty
- transverse polarization: $\rho_T(\mathbf{p}) = v_i^*(\mathbf{p})\rho^{jk}(\mathbf{p})v_k(\mathbf{p})$ with $\mathbf{v} \perp \mathbf{p}$ longitudinal polarization: $\rho_L(\mathbf{p}) = p_i \rho^{jk}(\mathbf{p}) p_k$

Further references

- [1] E. Braaten and R. D. Pisarski, Phys. Rev. D42 (1990) 2156; J.-P. Blaizot and E. Iancu, Phys. Rept. 359 (2002) 355; P. B. Arnold, G. D. Moore and L. G. Yaffe, JHEP 01 (2003) 030
- J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Phys. Rev. D89 (2014) 114007 [2]
- [3] A. Kurkela, T. Lappi and J. Peuron, Eur. Phys. J. C76 (2016) 688

enhanced $\partial_t \partial_{t'} F_{T,L}$ for $p \leq m$ visible

Conclusion

- a. We <u>developed a non-perturbative numerical approach</u> based on classical lattice simulations, linearized equations and linear response theory to extract the spectral function in over-occupied gauge systems.
- b. <u>HTL at LO can describe</u> many observables but important <u>deviations</u> also found; for the first time, measurement of <u>damping rates</u> $\gamma_{T/L}(p)$
- **c.** Outlook: We aim to use these techniques to study anisotropic, expanding systems for *initial stages* in heavy-ion collisions.