

A hybrid transport model for heavy quarks

Weiyao Ke^{*}, Yingru Xu, Steffen A. Bass, *Duke University* *wk42@phy.duke.edu

Theory E

Introduction

- A hybrid transport model of heavy quark evolution in a QGP medium:
 - Scattering with medium partons using LO pQCD.
 - Non-perturbative interactions missing from the LO pQCD picture are treated via a <u>diffusion</u> equation.
- Calibrate model and extract transport properties. - Validate model and predict novel observables.

Leading order pQCD scattering

Linearized Boltzmann equation $df/dt = \mathcal{C}^{2\leftrightarrow 2}[f] + \mathcal{C}^{2\leftrightarrow 3}[f]$.

• Elastic: $Qq(g) \rightarrow Qq(g)$ Radiation (Gunion-Bertsch): $Qq(g) \rightarrow Qq(g) + g$ Absorption: $Qq(g) + g \rightarrow Qq(g)$

- Matrix-elements screened by m_D , m_q .
- Model Landau-Pomeranchuk-Migdal effect by modifying radiated/absorbed gluon phase space,

 $\int \frac{dk^3}{2k} \to \int \frac{dk^3}{2k} 2 \left| 1 - \cos\left(\frac{t - t_0}{\tau_f}\right) \right|,$

 t_0 : time of last radiation/absorption. τ_f : gluon formation time. Suppress inelastic channel for $\Delta t \ll \tau_f$.

*Parameters of the pQCD interactions:

• μ : medium scale parameter controls the minimum Q in the running coupling constant $\alpha_s (\max\{Q, \mu \pi T\})$.

Diffusion

Langevin equations govern non-perturbative and soft interactions between heavy quarks and the QGP medium,

 $\Delta p_i = -\eta_D p_i \Delta t + \sqrt{\kappa \Delta t} \xi_i(t), \langle \xi_i(t) \xi_j(t) \rangle = \delta_{ij}$

Validation and predictions

Pick high-probability parameter set, $\tau_{\text{HQ}} = 0.9 \text{ fm/c}, \mu = 0.6, \kappa_D = 0.4, x_D = 0.5.$

- Validation : compare to experimental data that are <u>not</u> calibrated on. ALICE R_{pPb}^D , CMS v_3^D , STAR R_{AuAu}^D , and STAR v_2^D .
- Predictions : v_3^D , v_n^B , R_{AA}^B and D-meson v_1 relative to event-plane Ψ_3 .
- Empirical diffusion coefficients parametrization,

$$\frac{\kappa}{T^3} = \kappa_D \left(\frac{x_D}{T} + (1 - \frac{x_D}{T}) \frac{\text{GeV}^2}{ET} \right), \eta_D = \frac{\kappa}{2ET} - \frac{d\kappa}{dp^2}$$

*Parameters of the diffusion coefficients:

- κ_D : the magnitude of diffusion at $ET = 1 \text{ GeV}^2$.
- x_D : E-independent fraction of κ at $ET = 1 \text{ GeV}^2$.

Coupling to medium evolution

Medium evolution model was calibrated to $dN_{\rm ch}/d\eta$, v_n , $\langle p_T \rangle, \langle p_T \rangle$ fluctuation at the LHC.

Time [fm/c]	Medium	Heavy quark
$\tau = 0^+$	T _R ENTo	nPDF + FONLL
$ au < au_{ m HQ}$	Free streaming	Free streaming*
$ au_{ m HQ} < au < 1.2$	Free streaming	pQCD + diffusion
T > 154 MeV	2+1D v-hydro	pQCD + diffusion
T < 154 MeV	UrQMD	UrQMD
*Additional parameter:		

• $\tau_{\rm HO}$: heavy quark energy loss starting time.

Summary

- New hybrid transport model for heavy quark evolution in a QGP medium. Heavy quarks undergo perturbative scattering and non-perturbative diffusion.
- The calibrated model describes the experimental data at the RHIC and the LHC.
- The extracted transport coefficients overlap with previous work and static lattice calculations.

This work was supported by Grant #DE-FG02-05ER41367 (DOE) and Grant #OAC-1550225 (NSF).

- Induce different energy loss for heavy quarks mov-

References

Lattice (top to bottom): Francis et al PRD 92, 116003. Banerjee et al PRD 85, 014510. Ding et al PRD 86, 014509. Earlier Bayesian parameter extraction: Xu et al PRC 97, 014907.

ALICE: PRL 113, 232301; PRL 120, 102301; EPJ 17, 11800; arXiv:1804.09083.

CMS: PRL 119, 152301; arXiv:1708.03497; arXiv:1708.04962.

STAR: PRL 118; 212301, NPA 956, 473-476.