Screening masses and static quark free energy at non-zero baryon density from Lattice QCD

M.Andreoli¹, C.Bonati¹, M.D'Elia¹, M.Mesiti², F.Negro¹, A.Rucci^{1†} and F.Sanfilippo³

¹ Department of Physics of University of Pisa and INFN Pisa, Italy
 ² Academy of advanced computing, Swansea University, UK
 ³ INFN Roma Tre, Italy
 [†] Poster author email address: andrea.rucci@pi.infn.it

Introduction

At high temperatures, the interaction between static color charges can be used to probe the screening effects in the Quark-Gluon Plasma (QGP) which are the basis of interesting phenomenology such as dissociation of heavy quark bound states. In our work we studied the effects of a non-zero baryon chemical potential on the screening masses and on the static quark free energy by means of Lattice QCD simulations on a N_f =2+1 theory [*].

Gauge-invariant screening masses

Static quark free energy

Screening masses of QCD can be extracted from the long-distance behaviour of suitable gauge-invariant correlators of the Polyakov loop *L* [1,2,3]. At zero chemical potential

 $C_{M^+}(\mathbf{r},T) = \langle \mathrm{Tr}\mathrm{Re}L(\mathbf{0})\mathrm{Tr}\mathrm{Re}L(\mathbf{r}) \rangle - \langle \mathrm{Tr}\mathrm{Re}L \rangle^2 \sim \exp(-m_M r)/r$ $C_{E^-}(\mathbf{r},T) = \langle \mathrm{Tr}\mathrm{Im}L(\mathbf{0})\mathrm{Tr}\mathrm{Im}L(\mathbf{r}) \rangle - \langle \mathrm{Tr}\mathrm{Im}L \rangle^2 \sim \exp(-m_E r)/r$

belong separately to the chromo-magnetic and -electric sectors. When $\mu_B > 0$, charge-conjugation symmetry is broken and true physical modes are obtained by diagonalizing the matrix

 $egin{pmatrix} C_{M^+}(\mathbf{r}) & C_X(\mathbf{r}) \ C_X(\mathbf{r}) & C_{E^-}(\mathbf{r}) \end{pmatrix}$

where $C_X(\mathbf{r})$ is a mixed correlator. New screening masses m_1 and m_2 are defined from the large \mathbf{r} decrease of the eigenvalues $C_{1,2}(\mathbf{r})$ with the ansatz $C_{1,2}(\mathbf{r}) \sim \exp(-m_{1,2}r)/r$.

The correlators obtained on a $32^3 \times 8$ lattice at $T \simeq 217$ MeV and the QCD screening masses for several values of T and μ_I/T are reported

 $\mu_{\rm I} / \pi T = 0.0 - \mu_{\rm I} / \pi T = 0.1$

The free energy F_Q of an heavy quark in the thermal medium is related to the Polyakov loop *L* by $F_Q = -T \log |\langle TrL \rangle|$ [4]. We computed the renormalized ratio

where $\Delta F_Q(T, \mu_B) = F_Q(T, \mu_B) - F_Q(T, 0)$ and extracted the quadratic coefficient χ_{Q,μ_B^2} .

The results of ΔF_Q and the curvature χ_{Q,μ_B^2} obtained on a $32^3 \times 8$ lattice are shown

In the range of temperatures and baryon density explored, our data suggests that

- The correlator C_X signals the presence of a mixing at $\mu_B > 0$
- Magnetic and electric correlators mix and share the same long-distance behaviour dominated by the largest mass
- Eigenvalues C_1 and C_2 determine two new well-distinct

- The free energy is a decreasing function of µ_B which enhances deconfinement
- ► In the small baryon density range, the shape is quadratic
- The coefficient χ_{Q,μ_B^2} increases as the critical temperature is reached, signaling the deconfinement

The case of the Roberge-Weiss point

Imaginary chemical potential makes the partition function of the system periodic with period

 $\mu_I/T = \pi(2k+1)/3$ $k = 0, \pm 1, ...$

so that charge-conjugation is recovered at low temperatures but spontaneously broken above $T_{RW} \sim 200$ MeV, the Roberge-Weiss endpoint [*]. In our work we investigated the behaviour of the screening masses near this point.

Color-electric correlator and mass computed on a $40^3 \times 10$ lattice at $\mu_I/T = \pi$ at $T \lesssim T_{RW}$ are shown

masses m_1 and m_2

Masses are described by

$$\frac{m_{1,2}(\mu_B,T)}{T} = a_{1,2}(T) \left[1 + b_{1,2} \left(\frac{\mu_B}{3\pi T} \right)^2 \right]$$

References

[1] E. Braaten and A. Nieto, Phys. Rev. Lett. 74 3530, (1995)
[2] P. Arnold and L. Yaffe, Phys. Rev. D52, 7208 (1995)
[3] Y. Maezawa et al. (WHOT-QCD), Phys. Rev. D81, 091501 (2010)
[4] S. Borsányi et al., J. High Energy Phys. 04 (2015) 138.
[*] This work: Phys. Rev. D97, 054515 (2018) [arXiv:1712.09996]

- Definitions of color-electric and -magnetic masses are recovered with inverted hierarchy
- Significant growth of C_E due the Roberge-Weiss transition whose order parameter is ImTrL