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Abstract
In Ref. [1] we determined the dynamical attractors associated with anisotropic hydrodynam-
ics (aHydro) and the DNMR equations for a 0+1d conformal system using kinetic theory in
the relaxation time approximation. We compared our results to the non-equilibrium attrac-
tor obtained from exact solution of the 0+1d conformal Boltzmann equation, Navier-Stokes
theory, and second-order Mueller-Israel-Stewart theory. We demonstrated that the aHydro
attractor equation resums an infinite number of terms in the inverse Reynolds number.
The resulting resummed aHydro attractor possesses a positive longitudinal to transverse
pressure ratio and is virtually indistinguishable from the exact attractor. This suggests
that an optimized hydrodynamic treatment of kinetic theory involves a resummation not
only in gradients (Knudsen number) but also in the inverse Reynolds number. We also
demonstrated that the DNMR result provides a better approximation to the exact kinetic
theory attractor than Mueller-Israel-Stewart theory.

Viscous Hydrodynamics (vHydro)

Bjorken symmetry and conformal invariance may be used to show that the energy-
momentum conservation laws, obtained from the first moment of the Boltzmann equation,
can be reduced to a single equation
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involving the energy density ε and Π = Πς
ς. In second-order hydrodynamic theories, such

as Mueller-Israel-Stewart (MIS) [2] and Denicol-Niemi-Molnar-Rischke (DNMR) [3], one
uses the 14-moment approximation for the single particle distribution function to obtain
the most simple form of a differential equation for Π, which can be written in the following
form
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where ˙ = d/dτ and for RTA βππ = 38/21 and τπ = τeq in the complete second order
DNMR calculation while in MIS βππ = 4/3 and τπ = 6τeq/5. By solving Eqs. (1) and
(2) one can determine the dynamical evolution of a viscous fluid described by second order
hydrodynamics and investigate the emergence of hydrodynamic attractor behavior, as done
in Ref. [4].

Anisotropic Hydrodynamics (aHydro)

In the 0+1d case, anisotropic hydrodynamics (aHydro) requires only one anisotropy direc-
tion and parameter, n̂ and ξ [5]. This leads to an Ansatz of the form [6]
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where Λ can be interpreted as the local “transverse temperature”. For a conformal system,
one finds that the energy density, transverse pressure, and longitudinal pressure factorize,
resulting in ε = R(ξ)ε0(Λ), PT = RT (ξ)P0(Λ), andPL = RL(ξ)P0(Λ) with theR functions
being particular special functions. Using Landau matching, one has ε = R(ξ)ε0(Λ) = ε0(T ),
which results in T = R1/4(ξ)Λ. With this, Eq. (1) is the same as in viscous hydrodynamics.
To obtain the additional equation of motion for required, we use the second moment of
the Boltzmann distribution Iµνλ = Ndof

∫
dP pµpνpλ f,. From the Boltzmann equation

in the relaxation-time approximation (RTA), the equation of motion for this moment is
∂αI
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eq − uαIαµν). Taking the zz projection of this equation minus one-third

of the sum of its xx, yy, and zz projections gives our second equation of motion
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which can be used to define the evolution of the anisotropy parameter. One can rewrite

Eq. (4) in terms of the shear stress tensor component Π. Using Π(ξ) ≡ Π
ε = 1
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with H(ξ) ≡ ξ(1 + ξ)3/2R5/4(ξ). Written in this form, we can see that the aHydro second-
moment equation sums an infinite number of terms in the expansion in the inverse Reynolds
number. Note, importantly, that Eq. (5) reduces identically to Eq. (2) in the small-ξ limit.

Finding the non-equilibrium attractor
We follow [4] and introduce the dimensionless “time” variable

w ≡ τT (τ ) , (6)

with which one may define the amplitude
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ẇ
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which is related to Π as follows
Π
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The change of variables from {ε,Π} → {w,ϕ} is convenient because it allows one to
express the coupled set of first-order ODEs for {ε,Π} in terms of a single first-order ODE
for ϕ(w) [4].

vHydro

For standard viscous hydrodynamics one obtains,
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where w = w/cπ. To connect these equations with the RTA Boltzmann one must set
cη/π = 1/5.

aHydro

In the case of aHydro, this procedure gives
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Numerical solution

To obtain the attractor, one solves either Eq. (9) or (10) subject to a boundary condition at
w = 0 which can be determined using the “slow-roll approximation” [4]. We then compare
the result to the attractor obtained from the exact solution of the 0+1d Boltzmann equation
in RTA [7].
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Conclusions
•We obtained the dynamical attractors associated with the aHydro, MIS, and DNMR

versions of viscous hydrodynamics.

•We demonstrated that the aHydro dynamical equations resum an infinite number of terms
in the inverse Reynolds number. As a direct consequence of this all-order resummation,
we found that

–The resulting aHydro attractor was naturally restricted to 1/2 < ϕ < 3/4 which
guarantees the positivity of both the longitudinal and transverse pressures.

–The resulting aHydro attractor was virtually indistinguishable from the attractor
emerging from exact solution of the RTA Boltzmann equation.

•Numerical solutions for a variety of different initial conditions approach the attractor
within a time τattractor. In LHC heavy-ion collisions, one expects initial temperatures
T0 . 500 MeV at τ0 = 0.25 fm/c and η/s ∼ 0.2, which translates into τattractor & 1.3
fm/c with the lower bound holding in the hot center of the fireball on average.

•The dynamics of the system prior to τattractor is non-universal. In fact, at very early
times, the whole set of non-hydrodynamic modes should contribute to the evolution of
the system.
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