Kaon flow in Au+Au collisions at 1.23 AGeV with HADES

Lukáš Chlad for the HADES collaboration Nuclear Physics Institute of the CAS, public research institution

Motivation

- Kaons are a good probe for nuclear EOS [1]
- Their propagation in nuclear medium likewise their production is affected by kaon-nucleon potential
- Flow measurements are essential input for models (HSD, IQMD, BUU...)
- Impact on astrophysics (kaon condensate in the core of neutron stars) [2]

HADES

- Fixed target high-acceptance dielectron and hadron spectrometer [4]
- Located at SIS18 accelerator at GSI Darmstadt, Germany
- Six sector design
- Toroidal magnetic field
- Reaction plane is determined using Forward Wall

- Analyzed dataset $\sqrt{s_{NN}} = 2.42\,\mathrm{GeV}$ Au+Au collisions at
- •2.6 · 10⁹ events with centrality 0-40% recorded

Method and Results

Neutral kaons

- Reconstructed via decay into two charged pions
- Pion-pair selection criteria based on topology of weak kaon decay
- Combinatorial background is calculated with mixed-event technique • Azimuthal angle distribution relative to event plane angle is fitted
- with $rac{N}{2\pi}\left[1+2v_1\cos(\phi_{
 m K}-\phi_{
 m EP})+2v_2\cos(2(\phi_{
 m K}-\phi_{
 m EP}))
 ight]$
- Obtained parameters are corrected for event plane resolution [5]

Positively charged kaons

-0.08

- Only high quality tracks are selected
- Energy loss deposition in MDC and TOF detectors

backward rapidity

- Fitting mass distribution of selected candidates and subtracting cubic background within region of interest (two sigma around mean value)
- Selecting only part of phase space with uniform acceptance
- Correcting for detector occupacy
- Continuing the same procedure as for neutral kaons

Conclusions and Outlook

Neutral kaons

- Systematic effects are under investigation
- Combinational background subtraction works well thus it might be possible to relax topological cuts to increase statics

Positively charged kaons

- Direct antiflow is decreasing with increasing event centrality
- Good qualitative and quantitative agreement with FOPI and KaoS results
- Systematical errors are studied

References

- [1] A. B. Larionov and U. Mosel, Phys. Rev. C 72, 014901, 2005.
- [2] C. M. Ko, PROG PART NUCL PHYS 42, 109-123, 1999.
- [3] C. Fuchs, A. Faessler, E. Zabrodin, and Yu-Ming Zheng, Phys.Rev.Lett. 86, 1974-1977, 2001.
- [4] G. Agakishiev et al.(HADES Collaboration), Eur. Phys. J., A41:243 277, 2009.
- [5] Jean-Yves Ollitrault, arXiv:nucl-ex/9711003v2, 1997.
- [6] V. Zinyuk et al. (FOPI Collaboration), Phys. Rev. C 90, 025210, 2014.

[7] A. Förster et al. (KaoS Collaboration), J.Phys. G31 (2005) no.6, S693-S700, 2005.

Acknowledgement

This work was supported by EU OP VVV - CZ.02.1.01/0.0/0.0/16013/0001677, EU Contract No. HP3283286, MSMT LTT17003.

