

PH[%]ENIX

PHENIX beam energy and centrality dependence of direct photon emission in heavy ion collisions

Vlad Khachatryan* for PHENIX Collaboration Department of Physics and Astronomy, Stony Brook University, Stony Book, 11794 NY, USA

Measuring R_v with the Double Ratio for Au+Au

Direct Photon Data at 200 GeV, 62.4 GeV, 39 GeV

 $R_{\gamma} > 1$ if the direct photons are present in data sample.

 $R_{v} = 1$ if all the photons originate from hadronic decays.

 $\langle \varepsilon_{\gamma}(p_T) f(p_T) \rangle$

Cancelation of systematic uncertainties in R_v

 $\gamma^{incl}(p_T)$

* presented by Axel Drees

 $N_{coll} = \frac{1}{SY(\sqrt{S_{NN}})} \left(\frac{dN_{ch}}{d\eta}\right)^{\prime}$

The specific yield SY is a

function of $\sqrt{s_{NN}}$:

5

Scaling of Number of Binary Collisions with

Charged Hadron Multiplicity

α=1.25±0.02

0.98log(<mark>√s_№)</mark>-1.83

Au+Au, **√**s_{NN} = 39 GeV

● Au+Au, √s_{NN} = 62.4 GeV

▲ Au+Au, √s_{NN} = 200 GeV

♦ Pb+Pb, √s_{NN} = 2.76 TeV

Fit: $\frac{1}{SY(\sqrt{s_{NN}})} (dN_{ch}/d\eta)^{\circ}$

PHENIX

Abstract

Direct photon measurements provide a unique tool to study the strongly coupled QGP produced in heavy ion collisions and its evolution to hadron resonance matter. PHENIX has observed that a large number of direct photons are radiated during the evolution of the system created in Au+Au collision at 200 GeV, and that the photons are emitted with a large azimuthal anisotropy. PHENIX presents new data from 39, 62.4, and 200 GeV Au+Au collisions and from Cu+Cu collisions at 200 GeV. We find that the direct photon yield $dN_{\gamma}/d\eta$ is proportional to $(dN_{ch}/d\eta)^{\alpha}$. This new scaling behavior holds for beam energies measured at RHIC and LHC, for centrality selected samples, as well as for different collision systems.

> **Direct Photon Measurement Techniques in PHENIX**

Raw inclusive photon yield N_{γ}^{incl} measured through photon conversions to e^+e^- pairs.

External conversion in HBD:

Illustration of tracking assuming where the e^+e^- pair originated.

(b) Cu+Cu 0-40%

----- Au+Au 40-60%

p_{_} (GeV/c)

 $Au+Au \rightarrow \gamma + X$, |y| < 0.35

0-86%, $\sqrt{s_{NN}} = 39 \text{ GeV}$

Fit ∝ Exp[-p_/T_{eff}]

 $T_{off} = 0.176 \pm 0.027 \pm 0.070 \text{ GeV}$

---- Extrapolated to 1 GeV/

Normalized to N_{part} Au+Au 40-60%: N_{part} =56.0 Cu+Cu 0-40%: N_{part} =66.4

Example of invariant $e^+e^-\gamma$ mass distribution.

Vladimir.Khchatryan@stonybrook.edu

Summary

3 3. p_{_} [GeV/c]

Fit ∝ Exp[-p_/T_{eff}]

2.5

• The low p_T photon excess in A+A compared to p+p, which is often associated with thermal radiation, scales with N_{coll} at a given $\sqrt{s_{NN}}$ for all centrality selections.

Au+Au min. bias at 200 GeV, 62.4 GeV, and 39 GeV

(a) Cu+Cu MB

--- Cu+Cu

← T_{AA}×p+p

······ T_{AA}×p+p fit

- Ae^{- $p_T/B}+T_{AA} \times p+p$ fit</sup>

p_{_} (GeV/c)

T_{AA}-scaled pQCD ____ μ = 0.5 p_

...... μ = 1.0 p_

____μ = **2.0 p**_

0.5

1.5

2

2.5

3 3. p_{_} [GeV/c]

1 1.5 2 2.5 3 3.5 4 4.5 5 1 1.5 2 2.5 3 3.5 4 4.5

- This scaling at low p_T can be generalized to $\sqrt{s_{NN}}$ from 39 to 2760 GeV if the yield is scaled by the charge particle density to the $\sim 5/4$ instead of N_{coll}.
- At p_T below 2 GeV/c we find a universal direct photon spectrum with common slope and yield/Nch independent of $\sqrt{s_{NN}}$, centrality and collision system.
- The rapidity density of charged particles, and with it the number of quark participants, is proportional to Ncoll to a power ~4/5 with a proportionality constant that increases logarithmically with center of mass energy.