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The soft-gluon approximation, which assumes that radiated gluon carries away a small fraction of initial “* We address validity of the soft-gluon approximation within DGLV formalism, which assumes:
parton's energy, Is widely used assumption in calculating radiative energy loss of high momentum partons * Finite size, optically thin QGP.
traversing QGP created at RHIC and LHC. Regardless of its convenience, different theoretical » Static scattering centers, so the interactions with medium constituents are modeled by Debye
approaches reported significant radiative energy loss of high p, partons, which raised the doubts of its colored-screened Yukawa potential.
validity. To address this issue, we relaxed the soft-gluon approximation within DGLV formalism. Although * Gluons, in finite temperature QGP, as massive transversely polarized plasmons with effective mass
the obtained analytical expressions are quite distinct compared to the soft-gluon case, numerically both mg:,u/\/? _
cases lead to very similar predictions for the first order in opacity fractional energy loss. The predicted < Generalization of the results on dynamical medium is discussed.

number of radiated gluons is also barely affected. Additionally, the effects on these two variables run in
opposite directions, which when superposed results in nearly overlapping suppression predictions.

Interaction with Interaction with two ‘

Consequently, our results imply that, regardless of the skepticism, the soft-gluon approximation in one scatterer scatterers in contact limit
practice works surprisingly well in DGLV formalism. We also refer to generalizing this relaxation to the 0™ order | Mi o0
dynamical QCD medium, which suggests a broader validity of the conclusions obtained here. Mo .
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INTREDUECTHGN ? =
% The soft-gluon approximation (i.e. x = w/E, E = initial parton energy and w = radiated gluon energy) is

one of the most common assumptions usgd In calculating rad!anve energy _Ioss of hl_gh p. partons. < We relaxed the approximation for high p, gluon, by calculating corresponding 11 Feynman diagrams
< However, different theoretical models, which also assumed this approximation, obtained significant within DGLV, under the following assumptions:

radiative energy loss, questioning the validity of this approximation. = Initial gluon propagates along the longitudinal axis
“* Gluons are most affected by this approximation, due to color factor 9/4 compared to quarks. = The soft-rescattering (eikonal) approximation
< It was used in radiative part of our dynamical energy loss formalism, whose angular averaged R,,4 = The first order in opacity approximation.

predictions were successfully tested against comprehensive set of experimental data, implying
formalism’s reliability.

“* Nevertheless, the approximation breaks down for intermediate momentum ranges (5 < p, <10 GeV),
where experimental data are most abundant and with the smallest error-bars, and for gluons primarily.

* The obtained analytical expression for single gluon radiation spectrum (d Ng(l) /d x) beyond soft-gluon
approximation (bsg):
* |s more complicated than in soft-gluon (sg) case.
= Recovers sg result for x «< 1.

Why is relaxing the soft-gluon approximation important? * |s symmetric under the exchange of radiated (k) and final gluon (p).
% To establish how applicable is the approximation. < Finally, we compared bsg and sg numerical predictions for fractional radiative energy loss 4 E(") /E,

< To extend the model toward intermediate p, region. number of radiated gluons Ng(l), differential energy loss d £V /d x, single gluon radiation spectrum and
» To test the reliability of our predictions in the above case. suppression R, 4, to assess the effect of relaxation.

THEORENNCALTSANDENUVERICAL RESULTIS
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& How does the relaxation of soft-gluon approximation affect our predictions?

Interplay of the opposite effects
on AEW /E
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The effect of relaxing the soft-gluon approximation is: relevant x region.

* Verysmallfor: CONCLUSIONS AND OUTLOOK —
=  Fractional radiative energy loss up to ~ 3%.

N=E = NENC =S

=  Number of radiated gluons up to ~ -5%, and of a

opposite sign for the two variables. *» Few theoretical models reported considerable radiative energy loss,
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_ o N “* To our knowledge, this presents the first opportunity to assess the
The effect on R, is qualitatively the superposition of the effects

effects of relaxing the soft-gluon approximation within DGLV
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